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Abstract
Background Climate change is expected to alter the factors that drive changes in adaptive variation. This is 
especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may 
disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing 
environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest 
management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across 
the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within 
this species.

Results Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 
individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five 
genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was 
driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid 
sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for 
adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, 
and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we 
utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The 
required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential 
threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation 
reallocation.

Conclusions We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic 
adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including 
wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. 
longinux in lower elevations might face higher risks of local extinctions under climate change.
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Introduction
Trees profoundly influence global carbon cycles and eco-
system stabilization [1–3]. The effects of anthropogenic 
climate change on precipitation and temperature patterns 
have altered the distribution, community composition, 
and phenology of forest trees worldwide [4–7]. How-
ever, the impacts of climate change on focal species vary 
[8–12]. For example, warming temperatures may have 
a positive effect on the growth rate of trees from colder 
environments but a negative effect on trees from tropi-
cal regions [10, 13]. Higher temperatures and increased 
aridity are predicted to increase stress reactions in forest 
trees under drought conditions, especially tropical and 
subtropical tree species [14–17].

Studies of the potential response to climate change 
based on field experiments have emphasized the impor-
tance of phenotypic variation for adaptation to local cli-
mate and acclimation to drought and cold stresses [18, 
19]. However, field experiments are unrealistic for species 
with long lifespans, such as trees, or endangered species 
with limited populations. An alternative approach is gen-
otype–environment association (GEA) analysis, which 
identifies environmental factors that select for genetic 
characteristics [20, 21]. By predicting the vulnerability of 
forest trees to climate change and environmental factors 
that may restrict future distribution, GEA analyses can 
provide a foundation for conservation projects and forest 
management [22–24].

Although GEA studies have implied that standing 
genetic variation may enable some tree species to cope 
with climate change, the long lifespans and low germi-
nation rates of tree species may limit the pace of adap-
tation to acute and drastic environmental changes [25]. 
Moreover, the applicability of the results of GEA studies 
to conservation projects may be confounded by several 
factors. For example, the geographical distance between 
source and sink populations and the composition of 
natural barriers to gene flow may influence pollen dis-
persal direction and germination rates for introgression 
between populations [26]. These factors could reduce the 
spread of beneficial alleles (i.e., genetic rescue effects) 
[27]. Incorporating landscape analyses into GEA stud-
ies could improve the evaluation of genetic vulnerability, 
assessment of vulnerable populations, and inference of 
potential dispersal routes under climate change [28, 29].

The tree family Fagaceae is ecologically and economi-
cally important and has been widely studied in landscape 
genetics research [30, 31]. The varied natural habitats 
of Fagaceae species offer ideal study systems for explor-
ing the effects of environment on genetic diversity, local 
adaptation, and the response to climate change [32, 33]. 
Studies have shown that environmental factors, such as 
precipitation and temperature, significantly affect the 
adaptive divergence of Fagaceae species [34], but the 

impacts of other abiotic factors, such as wind, topology, 
and soil, have largely been ignored [35, 36]. Field experi-
ments have shown that wind and soil factors are promi-
nent drivers of local adaptation of plant morphology and 
physiology [37, 38], but the potential impacts of these 
factors on genomic architecture and phenotypic variation 
across the heterogeneous landscape of Fagaceae species 
have not been comprehensively established [19, 37, 39, 
40]. This is particularly true for Fagaceae species on the 
subtropical island of Taiwan, where the mountainous ter-
rain and diverse climate have created a range of habitats 
[41–43].

The rapid development of novel analytic methods in 
landscape genomics provides unprecedented opportu-
nities to examine new hypotheses and assess vulnerable 
populations using different statistical assumptions in the 
context of climate change [2]. If climate change disrupts 
the allele frequencies that underlie current genetics–
environment relationships, vulnerable populations may 
become less resilient or even extinct locally [44–47]. 
In this study, we adopted Quercus longinux Hayata, an 
endemic Fagaceae species in Taiwan, as the study spe-
cies to evaluate the complex effects of environment on 
local adaptation and the response to climate change. Q. 
longinux inhabits mountainous ranges across Taiwan, 
from low to middle elevations (500 m to 2,200 m above 
sea level) [48]. Based on its wide distribution along lati-
tudinal and altitudinal gradients, Q. longinux is classified 
into three varieties (i.e., var. longinux, var. kuoi, and var. 
lativiolaciifolia), and large morphological variations in 
fruits and leaves between habitats have been observed 
[48]. Q. longinux var. longinux and var. lativiolaciifolia 
grow sympatrically at low to middle elevations in Tai-
wan. By contrast, Q. longinux var. kuoi is allopatric with 
the other varieties and is limited to southeastern Taiwan. 
Compared with the other two varieties, Q. longinux var. 
kuoi has longer, broader leaves that are green on both 
sides when fresh and have a non-violet abaxial surface 
when dried [48]. Environmental variations may influence 
several leaf traits associated with photosynthetic effi-
ciency and acclimation to abiotic stresses [49–51]. Iden-
tifying variations in not only genetic data but also leaf 
morphology that are associated with environment could 
shed light on the processes that gave rise to the unique Q. 
longinux var. kuoi in southern Taiwan.

The ecological function of oaks in subtropical forests 
is essential, and it will be further important to evalu-
ate the adaptation and their vulnerability when climate 
change is believed to alter their distribution and dete-
riorate their survival. The first step to conservation is 
revealing their population structure and adaptation pat-
tern and identifying potential genetic sources and vul-
nerable populations. Therefore, this work was guided by 
three objectives. First, we aimed to infer genetic structure 



Page 3 of 18Sun et al. BMC Plant Biology          (2024) 24:279 

and assess the consistency of relationships between 
genetic data, ecological niches, and phenotypic traits for 
Q. longinux var. kuoi, a special allopatric variety limited 
to southern Taiwan. Second, we aimed to identify envi-
ronmental features that affect spatial genetic variation 
and adaptive genetic divergence. Third, we aimed to use 
adaptive genetic variants to evaluate the vulnerability of 
populations to climate change.

Materials and methods
Sampling, sequencing, read mapping, and variant calling
All samples analyzed in this study were collected and 
identified by the authors. We collected 26 populations 
spanning all known distributional regions of Q. longinux 
in Taiwan (Fig. S1a; Table S1). Three populations in 
Southern Taiwan (SK, LZ, and GS) were morphologi-
cally identified as Q. longinux var. kuoi; three popula-
tions (TP, NS, JSY) were collected near the locations with 
documented Q. longinux var. lativiolaciifolia [48]; and 
the rest populations were identified as Q. longinux var. 
longinux. From each selected tree, a branch with more 
than ten mature leaves was collected for morphologi-
cal measurements. Fresh leaves were stored in silica gel 
at 4 °C until DNA extraction. Voucher specimens of this 
study have been deposited at National Taiwan Normal 
University Herbarium (TNU) under deposition number 
TNU057201–TNU057214.

DNA was extracted using the modified CTAB method 
based on Doyle [52]. DNA quality and quantity were 
evaluated with a NanoDrop 2000 Spectrophotometer 
(Thermo Fisher Scientific, Wilmington, DE, USA) and 
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, 
CA, United States), respectively. After quality control, 
DNA from 205 individuals was used for dd-RAD library 
construction. The library was double digested by Sbf1 
and Msp1 and ligated to Illumina sequencing adapt-
ers with individual barcodes and library indices. Frag-
ments of 250–500  bp were selected and amplified by 
polymerase chain reaction (PCR). Finally, the fragments 
were sequenced using Illumina HiSeq X (Illumina, USA) 
to generate 150-bp paired-end reads, at the Technology 
Commons in College of Life Science (National Taiwan 
University, Taiwan).

We trimmed the raw reads to remove adapters, 
reads < 50 bp, and reads with quality < 30 using fastp [53]. 
The clean reads were mapped to the reference genome 
of Q. robur [54] using the mem algorithm of BWA [55]. 
Aligned reads with a mapping quality score < 20 were 
discarded. PCR duplicates were marked with the Picard 
Toolkit (http://broadinstitute.github.io/picard/). We fur-
ther performed realignment around indels using ABRA2 
[56]. Summary statistics, including read number, map-
ping rate, and coverage, were calculated from SAMtools 
[57]. Variants were called with BCFtools [58]. We first 

generated genotype likelihoods at each genomic posi-
tion with coverage using the BCFtools mpileup command 
and called the variants with default parameters. After 
removing indels, we retained biallelic SNPs with missing 
rates < 0.4, minor allele frequencies > 0.01, genotypes with 
quality scores > 30, and mean minimum depths > 3 as fil-
tering thresholds in VCFtools [59].

Genetic diversity, genetic structure, and demographic 
analysis
To evaluate and visualize the genetic clusters of Q. 
longinux, we first performed principal component analy-
sis (PCA) using a genetic matrix in which missing data 
were replaced with mean values of each site in the R 
package adegenet [60]. Next, pairwise FST, population-
specific FST, and permutational multivariate analysis of 
variance (PERMANOVA) were performed with the R 
packages hierfstat [61] and vegan [62] to evaluate dif-
ferentiation among defined genetic clusters. A neighbor-
joining (NJ) tree was also constructed based on the Nei 
distances from the R package ape [63]. We then employed 
StrAuto [64] analysis to assess the pattern of admixture 
among populations using 100,000 steps of MCMC chains 
with 25,000 steps burn-in and 10 iterations from K = 1 
to 8. The results were uploaded to the CLUMPAK [65] 
server to generate consensus plots and evaluate the best 
K according to the ΔK value.

A stairway plot was used to infer historical changes 
in the effective population size (Ne) of Q. longinux [66]. 
We first generated the site frequency spectra (SFSs) from 
easySFS (GitHub repo: https://github.com/isaacover-
cast/easySFS) using all SNPs and selected the projection 
values with the highest segregating sites for each group. 
We then ran bootstrapping 1,000 times to estimate 
median sizes and 95% CIs, assuming a mutation rate of 
1.01 × 10− 8 per bp per generation and a generation time 
of 50 years for oak species [67].

To provide an in-depth investigation of the evolution 
history between Q. longinux var. kuoi and the rest of the 
populations, we simulated and compared four scenarios 
(Fig. S1b) with different patterns of migration using fast-
simcoal2 [68]. All models were simulated and optimized 
using the composite likelihoods calculated with SFSs. 
Because the computation of fastsimcoal2 is demanding, 
observed SFSs were projected to five individuals per sim-
ulated population. A mutation rate of 1.01 × 10− 8 per bp 
per year was assumed for estimating all parameters with a 
generation time of 50 years [67]. To select the best model, 
we first used the Akaike information criterion (AIC), 
which represents the difference between the observed 
and expected SFSs, to rank the optimized models. Sec-
ond, the parametric-bootstrap approach was used to cal-
culate 100 likelihoods and the 95% CI for the parameters 
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estimated by the best models and to select the best-fitting 
models according to the lowest bootstrapping AIC.

Environmental variables and GIS processing
Three categories of environmental variables were col-
lected: 105 climate variables, eight soil variables, and four 
topological variables (Table S2). The climate variables 
included BIO01-19, seven monthly precipitation fac-
tors, temperature, solar radiation, and wind speed down-
loaded from WorldClim2 [69] and two aridity-associated 
layers [70]. Eight physicochemical soil characteristics 
downloaded from SoilGrids 2.0 were used as the soil vari-
ables [71]. For topography, the altitude layer was down-
loaded from GOV.DATA.TW (https://data.gov.tw/), and 
three altitude-derived layers (i.e., roughness, aspect, and 
slope) were computed with the R package raster [72]. All 
variables were resampled to a resolution of 1 km2 for the 
downstream analyses. To address the issue of multicol-
linearity, variables with VIF > 10 and Pearson correlation 
coefficient |r| >0.8 were discarded, leaving 20 environ-
mental variables among the three categories (Table S3; 
Supplementary data) for use in the subsequent analyses. 
We compared differences in the environmental variables 
between groups using analysis of variance (ANOVA) and 
Tukey’s honestly significant difference test applied in 
the R package stats [73]. The boundaries of Taiwan and 
nearby islands were downloaded from GADM database 
(http://www.gadm.org/). All maps in this study were 
depicted by the authors using R 4.2.3 [73].

Assessment of ecological and morphogenetic divergence
Niche differentiation assessment
To harness the power of GEA analysis to evaluate a spe-
cies’ ability to cope with future climate change, it is 
crucial to include non-genetic factors that may be asso-
ciated with fitness to local environments, such as niche 
characteristics and phenotypic traits. To investigate and 
quantify the niche overlap and diversification between 
the three (eastern, western, and southern) genetic groups 
revealed in our results, we first assessed the overlap 
of the realized niche using the first two axes from the 
environmental PCA performed with the 20 retained 
environmental variables in the R package ecospat [74]. 
Five hundred pseudo-absence points were added to the 
analyses as background. In addition, we calculated two 
niche overlap indices: Schoener’s D and the standard-
ized Hellinger-transformed Warren’s I based on occur-
rence density grids. Next, we conducted the equivalency 
test with 100 permutations and the background test with 
100 runs to evaluate the significance of niche differentia-
tion at p < 0.05. The equivalency test and background test 
were implemented with the R package ENMtools [75].

Phenotypic trait analysis
To quantify the contributions of genetic and environ-
mental factors to phenotypic variations, we measured 12 
morphological leaf traits that are commonly used in mor-
phological studies of Fagaceae and other plants (Table S3; 
Fig. S2; Supplementary data) [76–78]. A total of 826 dried 
leaves of 191 individuals from 26 populations (1–5 leaves 
per individual) were recorded with a digital camera and 
measured using ImageJ [79]. Because the measured traits 
may be highly correlated with leaf size, an additional six 
computational traits that are not typically correlated 
with leaf size were added [78]. We first performed PCA 
and PERMANOVA with the six computational traits 
(i.e., shape-related traits and specific leaf area (SLA)) 
and abaxial surface color to quantify morphological dif-
ferences among groups using the R package vegan [62]. 
Biplots of the attributes and contributions were visual-
ized with the R package factoextra [80]. Differences in 
traits between groups were compared using ANOVA and 
Tukey’s post hoc test. Next, we performed partial redun-
dancy analysis (RDA) to evaluate the contributions of 
geography, demography, and environment to phenotypes 
using all scaled phenotypic traits as the response.

To further investigate the associations between mor-
phological variables and environmental predictors, we 
constructed univariate generalized linear models (GLMs) 
with one of the leaf traits as the response (Table S4) and 
one of the environmental variables as the predictor in the 
R package MASS [81].

Detection of local adaptation and underlying gene 
functions
Identification of environment-associated genetic variants
We integrated two FST-based outlier detection meth-
ods and one genotype–environment association (GEA) 
approach to detect environment-associated SNPs. First, 
we implemented BayeScan [82] and pcadapt [83] to 
identify SNPs with a significant departure of allele fre-
quency from neutrality while controlling for background 
genetic structure. BayeScan was run with posterior odds 
(PO) = 100, and SNPs with q < 0.01 were retained as puta-
tive outliers. Pcadapt was performed with the number of 
K principal components (PCs) selected by the decreasing 
order of the percentage of variation explained by each 
PC. We further implemented Benjamini–Hochberg cor-
rection [84] on the results and retained the SNPs with a 
false-discovery rate (FDR) < 10% as candidate outliers.

Second, we utilized a univariate approach, the latent 
factor mixed models (LFMM) algorithm [85, 86], to dis-
cover SNPs that were significantly correlated with envi-
ronmental variables while accounting for population 
genetic structure. Imputation of missing data and deter-
mination of latent factors (K) were performed by the 
snmf function in the R package LEA [85]. LFMM was 

https://data.gov.tw/
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performed in the R package LEA [85] using the retained 
environmental variables with ten runs, and Z-scores from 
each run were combined. To further adjust the p-values, 
the Benjamini-Hochberg procedure [84] was used, and 
FDR < 10% was used to identify putative adaptive outliers. 
SNPs that overlapped between significant environment-
associated outliers and the BayeScan or pcadapt outliers 
were regarded as putative adaptive SNPs for use in down-
stream analyses.

To investigate and compare the roles of geography, 
demography, and environment in shaping the genetic 
variation of adaptive and all SNPs, we decomposed the 
relative contributions of each group of predictors using 
three methods. First, Mantel tests were used to test for 
associations between FST/(1-FST) and geographic distance 
(isolation by distance, IBD) and environmental distance 
(isolation by environment, IBE) using the R package 
vegan [62]. Environmental distances were represented by 
the Euclidean distances of scaled climatic, soil, and topo-
graphical variables. Values of pairwise FST between popu-
lations were calculated with the R package hierfstat [61]. 
Differences in FST between adaptive and all SNPs were 
compared by ANOVA in the R package stats [73].

Second, we performed partial redundancy analysis 
(RDA) using three predictor datasets: (1) proxies of geo-
graphic structure obtained by converting the geographic 
coordinates to uncorrelated axes using principal coordi-
nates of neighborhood matrices (PCNM) in the R pack-
age vegan [62] and retaining half of the positive axes; (2) 
proxies of demographic history obtained by performing 
PCA using the genetic matrix of all SNPs and retaining 
the PC scores from PC1 to PC2; and (3) the 20 retained 
environmental variables. The genetic metrics calculated 
from the adaptive or all SNPs were used as the response 
variables. To further quantify the variation explained by 
each group of environmental variables, we performed 
another partial RDA using the 20 environmental vari-
ables, which were classified into (1) climatic, (2) soil, 
and (3) topographical variables, as predictors of the two 
genetic metrics as the response. The significance of the 
full models and pure fractions was assessed using 999 
permutations with the function anova.cca() of the R 
package vegan [62].

Third, we used GradientForest (GF), a non-linear and 
machine-learning approach derived from the random 
forest algorithm [87]. GF was performed with the genetic 
metrics of the adaptive or all SNPs. The number of 
regression trees was set to 500, the maximum number of 
splits was set using the formula log2 (0.368 × number of 
individuals/2), and the correlation threshold r was set to 
0.5, as suggested in a previous study [87]. The importance 
of each group of predictors was evaluated by the percent-
age of weighted R2.

Gene annotation and enrichment analysis
To further investigate the potential gene functions of 
putative environment-associated SNPs, we retrieved the 
closest genes with a physical distance < 10 Kbps as poten-
tial underlying genes using BEDOPS [88]. The closest 
genes were further annotated to the Arabidopsis thali-
ana genome using KOBAS-I [89] with the criterion of 
e-value < 10− 5. After retrieving the homologous genes, 
gene enrichment analysis was performed with the GO 
and KEGG databases to detect enriched pathways using 
KOBAS-I. Significance was assessed with Fisher’s exact 
test [90], and FDR was corrected with the Benjamini and 
Hochberg procedure [84]. FDR < 5% indicated signifi-
cantly enriched GO terms or pathways.

Investigating the influences of current landscape variables 
on genetic differentiation
To compare landscape characteristics that shaped the 
differentiation of adaptive or all SNPs, we constructed 
IBD, IBE, and isolation by resistance (IBR) models using 
FST/(1-FST) calculated from adaptive or all SNPs as a 
response. Six predictor matrices were generated, includ-
ing a geographical Euclidean distance metric (IBD), three 
environmental Euclidean distances calculated from the 
climate, soil, and topology factors (IBEclimate, IBEsoil, and 
IBEtopology), and two circuit-theory-based resistance lay-
ers calculated with CIRCUITSCAPE [91] using distribu-
tion maps of ecological niche modeling from the factors 
of climate and topography (e.g., IBRclimate, IBRtopography).

We used two complementary approaches to compare 
the models. First, reciprocal causal modeling (RCM) 
[92] was performed to evaluate the relative importance 
of each model based on the relative values of partial 
Mantel tests estimated from each focal and alternative 
model. All partial Mantel tests were computed using the 
R package vegan [62] with 999 permutations. Second, 
we implemented the maximum likelihood population 
mixed-effects model (MLPE) [93] to compare each pre-
dictor based on the AIC values. Models with ΔAIC > 2 
were considered to have different model fits. MLPE was 
implemented with mlpe_rga in the R package Resis-
tanceGA [94]. In addition, we performed an estimated 
effective migration surfaces (EEMS) analysis [95] to 
visualize geographic regions deviating from the assump-
tion of IBD. Missing data were imputed and converted 
to genetic distance using the function bed2diffs. Next, 
EEMS was executed with RunEEMS_SNPS with a Deme 
number of 500. A total of 500,000 Markov chain Monte 
Carlo (MCMC) iterations were run after a burn-in of 
150,000 and a thinning interval of 9,999.
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Investigating the impacts of future climate change on 
genetic adaptedness
Ecological niche modeling
To investigate the current potential distribution range 
of Q. longinux, we performed ecological niche modeling 
(ENM) using an ensemble approach based on the true 
skill statistic (TSS)-weighted combination of six meth-
ods in the R package sdm: maxent, glm, svm, gam, mda, 
and mlp [96]. Five hundred pseudo-absence data were 
generated and added to the analyses. A total of 60 runs 
with 10-fold cross-validation analyses were performed. 
We then used the area under the receiver-operator 
curve (AUC) to evaluate model performance. Finally, the 
habitat prediction was transformed into a binary map 
that classified suitable and unsuitable regions using the 
threshold of maximum test sensitivity plus specificity.

Genetic offset assessment
Because the accessible prediction layers are limited, we 
only applied five temperature and precipitation variables 
(i.e., BIO1, BIO3, BIO12, PREC4, and PREC10) selected 
from the obtained factors to assess the influence of cli-
mate change on Q. longinux. We downloaded and aver-
aged the predictions from three future models (CCSM4, 
MIROC-ESM, and MIROC5) in 2070 to account for 
model variability. We also considered two contrasting 
representative concentration pathways (RCPs): a low-
emission model (RCP2.6) and a high-emission model 
(RCP8.5) from CMIP5 for 2070. Three complementary 
approaches were used to evaluate genetic offset. We first 
calculated the risk of non-adaptedness (RONA), which 
represents the theoretical changes needed in allele fre-
quency to maintain the linear environment-genotype 
relationships with correction on weighted R2, imple-
mented in pyRONA [97]. We retained and discussed the 
top three representative climatic variables with the high-
est number of significant outliers.

Second, as a complementary method to RONA, we 
used a random forest algorithm to model the non-linear 
relationships between adaptive SNPs and the same cli-
matic variables as RONA in the R package GradientForest 
[87]. PCA was performed on the GF model to visualize 
the prediction of genetic variation in spatial regions, and 
the first three principal components (PCs) were assigned 
to a red–green–blue palette. The genetic offset in the GF 
model was calculated as the Euclidian distance between 
the current and future genetic composition at each grid. 
The binary map generated by ENM was used as a mask to 
limit prediction within suitable habitats.

Third, following Gougherty, Keller [98], we integrated 
migration to predict maladaptation to future climate 
using a generalized dissimilarity modeling (GDM) algo-
rithm [2] with local, forward, and reverse genetic offsets. 
Local offset represents the predicted in situ change in 

allele frequencies with no migration. Forward offset was 
calculated by selecting the minimum offset between each 
grid in the current range and all grids in the future cli-
mate, and reverse offset was calculated by identifying the 
minimum offset between each grid within the current 
range in the future and all grids in the current climate. 
For forward offset, the distance required to migrate to 
the place with minimum forward genetic offset and the 
direction (bearing) of migration were also recorded. No 
dispersal limitation was assumed for forward and reverse 
offsets to any locations in suitable habitats. Finally, to 
simultaneously visualize local, forward, and reverse off-
sets, we mapped the three metrics as red, green, and blue 
in an RGB image.

Results
Population structure and demographic history
On average, 70.9% of reads per sample were successfully 
mapped to the reference genome of Q. robur. We recov-
ered 624,451 SNPs and retained 1,933 high-quality SNPs 
with an average individual missing rate of 11%. StrAuto 
revealed three genetic clusters (Fig. 1a): the eastern and 
western clusters, which are mainly separated by the cen-
tral mountain range (CMR), and a cluster in the Henc-
hung Peninsula that was limited to southern Taiwan, 
denoted as HC. From the result of StrAuto, individuals 
in each cluster were genetically admixed with other clus-
ters (Fig.  1b). PCA and the neighbor-joining (NJ) tree 
also suggested that the boundaries of the three clusters 
were not clearly defined (Fig.  1c; Fig. S3a-b). FST was 
higher between genetic clusters than within groups, and 
divergence was highest between HC and the eastern 
cluster (Fig. S4c). Similar results were obtained by PER-
MANOVA (Table S5). The results of the estimated effec-
tive migration surface (EEMS) analysis also suggested 
the connectivity and geographic distribution of genetic 
diversity were mainly separated by CMR (Fig.  1d-e). 
According to the stairway plot (Fig. S4d), Ne has differed 
between HC and the other two clusters since 1  million 
years ago (Fig. S4d). The apparent population decline 
of HC 1  million years ago was preceded by a period of 
larger population size. By contrast, the eastern and west-
ern clusters underwent a relatively recent population 
decline in the last 100 Ky. The fastsimcoal2 analysis sug-
gested no apparent gene flow between group HC and the 
eastern and western clusters since their divergence of 
19.6 Kya (Table S6). Recent bottleneck events were also 
revealed at 11.5 Kya from the best models for all simu-
lated populations.

Influence of landscape factors on population genetic 
divergence
We identified 182 FST outlier SNPs (pcadapt + BayeScan) 
and 540 SNPs that were significantly associated with 
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one or more environmental variables by LFMM (Fig. 2). 
A total of 105 putative adaptive SNPs (identified by the 
overlap between LFMM and FST outliers) were found in 
35 genes (Table S7) that were widely distributed across 
the genome and did not cluster in specific regions. FST 

estimate from adaptive SNPs was higher and more sig-
nificant than all SNPs (mean FST all loci = 0.09; mean FST 
outlier = 0.59; p < 0.05), indicating that selection may drive 
the spatial genetic differentiation between populations. 
Compared to all loci, the adaptive loci exhibited stronger 

Fig. 1 Spatial genetic structure and diversity of Q. longinux in Taiwan. (a) Sampling populations annotated with ancestral components inferred by StrAuto 
according to K = 3. (b) Results of StrAuto from K = 2 to 3. The height of each colored segment represents the possible ancestry of each individual derived 
from inferred ancestors. (c) Results of PCA with different colors reflecting different groups. (d) Results of the EEMS analysis of regions significantly de-
viating from isolation by distance (IBD). The blue, white, and orange colors illustrate regions with high dispersal rates (dispersal corridor), IBD, and low 
dispersal rates (dispersal barrier), respectively. (e) Results of the effective diversity (i.e., the modeled dissimilarity between pairs of individuals from the 
same location) estimated by the EEMS analysis. Blue and orange represent regions of high and low genetic diversity, respectively. The black dots indicate 
the sampling locations
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IBD and IBE patterns (Fig.  3a). Using reciprocal causal 
modeling (RCM) and a maximum likelihood popula-
tion mixed-effects model (MLPE), IBE was consistently 
identified as superior to other competitive models using 
adaptive SNPs when controlling population structure, 
indicating that genetic differentiation of the adaptive 
SNPs was mainly influenced by environmental variation 
(Fig. 3b-c; Table S8). Furthermore, the divergence of the 
genetic structure of HC from those of the other clusters 
was greater when divergence was assessed by adaptive 
SNPs than by neutral SNPs (Fig. S4a-b). By contrast, IBR 
based on topographical resistance was selected as the 
best model by MLPE and RCM using all sites, suggesting 

that the overall genetic differentiation of the species was 
mainly influenced by topographical dispersal barriers 
(Fig.  1d-e; Table S8). The conductance layers generated 
by the CIRCUITSCAPE algorithm also supported topo-
graphical resistance across regions, with greater barriers 
to dispersal at higher elevations (Fig. S4e-f ).

The results of partial RDA indicated that pure envi-
ronment was the most significant variable affecting the 
genetic variation of adaptive SNPs among three pure-
effect portions; whereas pure demography was the most 
important pure-effect portion of all SNPs when con-
trolling other factors (Fig. S5; Table S9). Forward selec-
tion also identified population structure as the most 

Fig. 2 Results of the genetic scans. The Venn diagram shows the overlap of the loci identified by each method
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significant variable affecting the genetic variation of 
adaptive SNPs (Table S10). Environmental variables con-
tributed to 80% of the explained variation in adaptive loci 
but 60% in all loci (Fig. S5). For adaptive loci, the three 
groups of variables explained a large proportion of the 
joint effects (45% of explained variation) (Fig. S5; Table 
S9). Another partial RDA that decomposed the contribu-
tions of climate, soil, and topography to the genetic varia-
tion in either the adaptive or all SNPs revealed that pure 
climate and soil variables explained significantly more of 
the genetic variation in adaptive SNPs than topography 
variables (Fig. S5). In agreement with the results of par-
tial RDA, GF analysis demonstrated that demography 
was the top variable with the highest weighted R2 (Table 
S11; Fig. S6), although geography explained a higher pro-
portion of variation after summing the total weighted R2 
(demography: 32%; geography: 47%).

Functional annotation of adapted loci
Several Q. longinux loci involved in climate and soil 
adaptation were associated with environmental variables 
(Table S7). Two functional pathways were significantly 
enriched in adaptive loci: oxidative phosphorylation and 
photosynthesis.

Furthermore, the allele frequencies of the annotated 
loci were associated with environmental gradients 
(Fig.  4a), indicating adaptation signals. Wind and soil 
gradients were significantly associated with the allele 
frequencies of ATPD, NF-Y19, cob, rpoB, and ABCG34 
(Fig. 4b; Table S7). Some outliers, such as ADH1 ortho-
logs, were associated with annual mean temperature and 
precipitation in spring (Fig.  4a). Other genes, including 
AT2G40435, the NET1D ortholog, and the HSP70 ortho-
log, were also involved in precipitation- and tempera-
ture-associated adaptation (Fig. 4b; Table S7).

Analyses of ecological niche and morphometric 
distinctiveness
Consistent with the genetic data, niche analysis of the 
first two axes of the environmental PCA and both over-
lap indices showed that the eastern and western clusters 
had a higher degree of niche overlap with each other than 
with HC (Fig. S7). HC was characterized by niches with 
higher mean annual temperature and lower precipitation 
in spring compared to those of the other clusters (Fig. 
S7). The equivalency test, background test, and ANOVA 
demonstrated that the three clusters occupied signifi-
cantly different ecological niches (Fig. S7; Fig. S8).

Fig. 3 Landscape genetics of Q. longinux and factors influencing genetic divergence. (a) Isolation by distance (IBD) analysis and three isolation by envi-
ronment (IBE) analyses based on adaptive sites (green dots and upper lines) or all SNP sites (red dots and lower lines). (b) Results of reciprocal causal mod-
eling using all SNP sites or (c) adaptive loci. The y-axis represents focal models, and the x-axis represents alternative models. The colors of the heatmap 
indicate differences in Mantel’s R between the focal and alternative models. Fully supported focal models are marked with asterisks
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The PCA and RDA of phenotypic traits were also con-
gruent with the genetic analyses and showed that HC 
was morphologically and ecologically differentiated from 
the other clusters (Fig. 5a-b; Fig. S9; Fig. S10), which was 
classified as Q. longinux var. kuoi. Although the east-
ern and southern clusters had a high degree of overlap 
according to the first two PC axes, PERMANOVA indi-
cated significant differentiation between the two clusters 
(Table S12). In contrast, Q. longinux var. lativiolaciifolia 
was genetically and morphologically admixed with Q. 
longinux var. longinux, and no apparent structure could 
be assigned between these two varieties (Fig. 1a-b). Par-
tial RDA using all phenotypic traits as responses demon-
strated that pure geography contributed more variation 
than pure environment, and a large intersection between 
their interactions was found (Fig.  5c-d; Table S13). The 
GLMs revealed that leaf traits were significantly associ-
ated with environment, but the directions of the relation-
ships (i.e., positive or negative) differed depending on the 
trait and environmental variable (Fig. S11). For exam-
ple, leaf thickness was positively correlated with annual 
temperature (r = 0.22, p < 0.01), whereas leaf length was 
negatively correlated with annual precipitation (r = − 0.22, 
p < 0.01).

Genetic offset and prediction of the response to future 
climate change
The high AUC value (average AUC = 0.81) suggested 
a good model fit for the predicted distribution of Q. 
longinux (Table S14; Fig. S12). As the predictions under 
different RCPs were highly correlated (Table S15), 
we inferred RONA based on the average values from 
both predictions. Substantial variations in the RONA 

estimates between populations and the top three repre-
sentative environmental variables were observed (Fig. 6a-
c; Table S15). The RONA estimates were larger in regions 
with greater differences between current and future 
climates (Fig.  6a-c). Whereas the eastern and western 
populations had relatively low RONA values (< 0.2) for 
the three variables, the northern populations were pre-
dicted to suffer from severe winter rainfall (precipitation 
in October, Fig.  6a) in the future and had much higher 
RONA values (> 0.6).

The GF model constructed with five climatic variables 
suggested that precipitation in winter was the most influ-
ential variable with the highest weighted R2 (Fig. S13). 
The focal species exhibited strong spatial patterns, indi-
cating adaptation to local climate conditions (Fig.  6d). 
Consistent with the results of the RONA analysis, the 
GF model estimated highly correlated results between 
RCPs with similar genetic offset patterns (Fig. 6e-f ). Both 
the RONA analysis and the GF model indicated that the 
northern populations were the most vulnerable to future 
climate change (Fig. 6e-f ).

Although the predicted patterns of local, forward, 
and reverse offsets varied throughout the range of Q. 
longinux, these offsets were consistently predicted to be 
highest in the northernmost and southeastern popula-
tions (Fig.  7a-b). More migration events were predicted 
for the northern populations, with longer distances to 
minimize forward offsets in the RCP8.5 model than in 
the RCP2.6 model (Fig. 7c-f ).

Fig. 4 Results of environment-dependent outlier detection. (a) Associations between allele frequencies and environmental variables. The black dots rep-
resent the average allele frequencies of all adaptive loci correlated with WIND10, PREC04, CLYPPT, and BIO01 for each population. (b) Manhattan plots of 
SNP sites associated with WIND10, PREC04, CLYPPT, and BIO01. The orange dots represent significant loci at p < 0.05. Selected candidate genes are labeled 
in the plots at their respective genomic positions
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Discussion
We analyzed genomic data and phenotypic traits to 
explore the genetic architecture of several environment-
associated adaptations of Q. longinux, a dominant ever-
green forest tree species on the subtropical island of 
Taiwan in East Asia. We identified several SNPs with 
strong effects on adaptation to environmental factors, 
including some factors that have rarely been discussed 
in GEA studies (e.g., soil- and wind-related factors). We 
found that leaf traits were influenced by the interaction 
of demographic and environmental factors. Moreover, we 
determined that the populations in northern and south-
eastern Taiwan are the most vulnerable to future climate 
change. Finally, we identified populations with unique 
genetic and phenotypic characteristics in southern 

Taiwan. These populations are potential targets for 
conservation efforts in forest management to preserve 
unique and adaptive genetic resources.

Distinct genetic separation of southern populations from 
eastern and western populations in Taiwan
Three putative genetic clusters were classified using 
PCA and StrAuto. The eastern and western clusters were 
mainly separated from each other by the CMR and were 
mixed in northern and southern Taiwan. Similar patterns 
of east–west divergence have been observed for other 
plants in Taiwan [99, 100], implying that the mountain 
ridges and rugged topography act as profound barriers 
to gene flow and contribute to the divergence of species 
occupying low-to-middle elevations in Taiwan. The third 

Fig. 5 Variations in leaf traits and results of partial RDA. (a) Results of PCA colored by different genetic groups. (b) Partial RDA partitioning sources of 
phenotypic variation into different environmental factors. Environmental factors are depicted with red arrows. (c) Partial RDA of environmental factors, 
geography, and demography. (d) Partial RDA partitioning explained variation into climatic, soil, and topographical variables. The values are the explained 
variation. Values < 0 are not shown
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cluster, HC, was limited to the Henchung Peninsula in 
southern Taiwan, which has been identified as the main 
glacial refuge in Taiwan for other Fagaceae species, such 
as Q. glauca and Castanopsis carlesii [101, 102]. The 
populations of HC were genetically differentiated from 
other populations, as suggested by higher pairwise FST 
and distinct trajectory of changes in Ne in the past 1,000 
years. The optimal demographic scenario revealed HC 
diverged from the rest of the populations dating back to 
the Last Glacial Maximum (LGM; ∼20Kya) when most 

of the low-elevation oaks were believed to retreat to the 
refuge in southern Taiwan [101, 102]. Also, implying col-
onization resulting from Pleistocene climate oscillations 
could prompted the diversification and local adaptation 
of plants in Taiwan Island. Taken together, our results 
reveal significant genetic differentiation between the 
eastern cluster, western cluster, and HC and suggest that 
HC, morphologically classified as Q. longinux var. kuoi, 
in the southernmost part of Taiwan have diverged from 

Fig. 6 Prediction of genetic offset under future climate change based on (a, b, c) RONA and (d, e, f ) GF methods. (a), (b), and (c) reflect the RONA values 
estimated for PREC10, BIO12, and BIO03. The color gradients represent the average differences in climatic variables between current conditions and 2070 
climate change scenarios. (d) RGB map of the first three PC axes based on the GF prediction, which depicts the genetic turnover of adaptive loci. (e) and 
(f ) illustrate the genetic offset throughout the range of Q. longinux under the RCP2.6 (c) and RCP8.5 (d) scenarios in 2070. The colors of the cells represent 
the values of genetic offset estimated based on the GF procedure
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the two clusters without apparent gene flow since their 
divergence.

A distinct group of Q. longinux populations, group 
HC, with unique leaf and fruit traits in tropical marine 
climates in southern Taiwan was previously classified 
as Q. longinux var. kuoi. This variety has no whitish epi-
cuticular wax coating on abaxial surfaces [48]. Niche 
analyses also demonstrated that the habitats harboring 
Q. longinux var. kuoi were significantly different from 
those of the other populations, with no ecological over-
laps, indicating that Q. longinux var. kuoi may face dif-
ferent environmental pressures. Moreover, we found 
evidence of adaptive divergence between Q. longinux 
var. kuoi and other populations. For example, the low 
spring precipitation and high clay content in habitats in 
southeastern Taiwan may act as strong environmental 
stresses that initiate genetic and phenotypic adaptation 
(e.g., drought resistance) in response to local condi-
tions. In plant species, hostile environmental conditions 

in edge populations prompt local adaptation processes 
[103]. Distinct environmental pressure, along with a lack 
of migration between HC and the rest of the Q. longinux 
population, could speed up the fixation of alleles in a rel-
atively smaller group, further facilitating the genetic and 
phenotypic adaptation [25, 104]. The substantial diver-
gence, relatively high genetic diversity, and high offsets 
of the populations in southern Taiwan indicate that Q. 
longinux var. kuoi is a conservation unit that should be 
prioritized for protection as a source of adaptive genetic 
variations related to high temperature and drought resis-
tance under climate change.

Environmental heterogeneity drives adaptive genetic 
divergence and phenotypic variation
IBE was the most strongly supported model based on 
putative adaptive loci, whereas IBR mainly drove genetic 
differentiation based on all SNPs. PCA also revealed 
less genetic admixture when genetic differentiation was 

Fig. 7 Map of the GDM-predicted genetic offset across the distribution of Q. longinux under the RCP2.6 (a, c, e) and RCP8.5 (b, d, f ) climate change 
scenarios. (a) and (b) show the RGB maps of local (red), forward (green), and reverse (blue) offsets under RCP2.6 (a) and RCP8.5 (b) in 2070. Brighter cells 
represent relatively high values along each of the three axes, whereas darker cells indicate relatively low values. (c) and (d) depict the direction of forward 
offsets among the distribution range of Q. longinux under RCP2.6 (c) and RCP8.5 (d) in 2070. (e) and (f ) represent the estimated distances between source 
cells with the lowest forward offset to sink cells under RCP2.6 (e) and RCP8.5 (f ) in 2070

 



Page 14 of 18Sun et al. BMC Plant Biology          (2024) 24:279 

assessed by GEA outliers compared to neutral SNPs, 
indicating that the three genetic clusters (i.e., eastern, 
western, and HC) were exposed to different environmen-
tal pressures and had undergone adaptive divergence. 
However, the partial RDA revealed a large intersection 
of explained variation (45%) shared by environment, 
geography, and colonization history, suggesting that 
environmental variation is highly covaried with other 
confounding factors. Similar covariations have been 
observed in the south-to-north postglacial expansion of 
the red spruce along the Appalachian Mountains which 
created high collinearity between genetic structure, cli-
mate gradients, and geographic distributions [105]. 
Similarly, evergreen subtropical trees in Taiwan under-
went south–north expansions after the LGM and may 
have developed adaptations to latitudinal gradients of 
temperature and precipitation, resulting in confounding 
relationships between geography, genetic structure, and 
adaptation. Consequently, it was challenging to attri-
bute and disentangle the genetic variation explained by 
each category of predictors, leading to a non-significant 
impact of pure climate variables.

Leaf shape is affected by various environmental factors, 
such as precipitation and temperature, which maximize 
photosynthetic efficiency and adaptation to harsh envi-
ronments [76, 106–108]. We found that several leaf traits 
of Q. longinux were influenced by environmental factors 
(Fig. S11; Table S13) and a negative correlation between 
leaf length and annual precipitation contradicts previous 
findings [51, 109]. However, we observed a positive cor-
relation between annual precipitation and wind speed in 
winter and a negative correlation between annual precip-
itation and solar radiation in summer (Fig. S14). Strong 
wind and weaker solar radiation may counteract the 
effects of increased annual precipitation on leaf length. 
Similar confounding effects of climatic factors on leaf 
growth and elongation were observed in Fagus sylvatica 
[77]. We demonstrated that the interaction of environ-
ment and geographic relationships mainly contributed 
to the explained variation in leaf traits. Demographic 
history provided only a limited contribution to leaf vari-
ation, suggesting that phenotypic plasticity or local adap-
tation contributed by local climate surpasses the impact 
of demographic history on leaf traits.

Temperature and precipitation are known drivers of 
genetic adaptation in Fagaceae [34]. This study expands 
the environmental factors considered compared to pre-
vious GEA studies and demonstrates that significant 
selection is initiated by multiple environmental factors 
in an endemic Quercus species. First, we found that wind 
speed in cold seasons influenced leaf traits and adaptive 
genetic variation (Table S10; Fig. S11). Wind intensity 
has been shown to reduce plant growth and height and 
increase stem thickness [110, 111]. Wind also influences 

transpiration rates and stomatal conductance, indirectly 
affecting photosynthetic efficiency and water require-
ments [112, 113]. Some genes correlated with wind 
speed were also significantly associated with precipita-
tion-related factors (e.g., ATPD, NF-YCP), implying that 
elevated evaporation rates caused by strong wind may 
result in drought-like stress, which plants may respond 
to through similar genetic pathways. Second, we deter-
mined that soil-related variables contributed 60% of the 
variation in adaptive divergence, indicating critical roles 
of these variables in local adaptation of Q. longinux. The 
characteristics of soil particle sizes represent the poten-
tial water content and salt stress in local soils. In general, 
soil particle size is negatively correlated with water avail-
ability, implying potential abiotic pressure from water 
deprivation during dry seasons [36, 114]. Consistent with 
this conclusion, we observed a correlation between genes 
involved in the response to drought and grid size. In sum-
mary, our findings provide a new perspective for future 
GEA studies by indicating that some environmental 
variables with important but rarely tested physiological 
impacts can be used to unravel the intricate mechanisms 
related to plant adaptation.

We identified two significantly enriched functional 
pathways, oxidative phosphorylation and photosynthe-
sis, which have been implicated in plant adaptation and 
physiological responses to abiotic stress [115, 116]. Oxi-
dative phosphorylation helps regulate reactive oxygen 
species (ROS) generation by plant mitochondria under 
abiotic stresses [115, 116]. The efficiency and regulation 
of photosynthesis strengthen the plant and sustain its 
growth and development under stressful or unfavorable 
conditions [117]. These results suggest that the identified 
adaptive SNPs underlie the response to different abiotic 
stresses. Several genes demonstrating significant associa-
tions with environments also have potential functions for 
adaptation. For example, loci of ADH1 are strongly asso-
ciated with annual mean temperature and precipitation 
in spring. ADH1 is responsive to multiple abiotic stimuli, 
including low temperature, hypoxia, flooding, salt, and 
dehydration [118–120]. In legumes, ADH1 is a target of 
miRNA regulation under water-deficit to coordinate ROS 
levels [121]. Under stressful cold situations, ADH1 plays 
a crucial role in maintaining the stability of membrane 
structure to enhance cold resistance in plants [115]. 
Other genes involved in precipitation- and temperature-
associated adaptation include orthologs of AT2G40435, 
which is involved in responses to biotic and abiotic 
stresses [122, 123]; NET1D, which is expressed in root 
tissues and mediates uptake in response to stress [124]; 
and HSP70, which stabilizes and refolds heat-inactivated 
proteins to protect cells from heat damage [125].
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Assessing genetic vulnerability and climate adaptation in 
Quercus longinux
The projections of genetic offset from GF and RONA 
revealed that the populations in northern Taiwan might 
experience the most considerable turnover of genetic 
composition to cope with future climate change (Fig. 6). 
Winter precipitation in northern Taiwan is expected to 
more than double according to both emission models 
(current: 302  mm, RCP2.6: 682  mm, RCP8.5: 635  mm). 
The drastic increase in winter precipitation will nega-
tively impact forest productivity [126] because the 
complex relationship between precipitation and water 
availability affects plant growth and phenology [126, 127]. 
Winter precipitation significantly impacts the phenol-
ogy of oaks, including the onset and duration of flower-
ing, bud bursting, and leaf flushing, and thus may greatly 
affect the likelihood and extent of gene flow between 
populations [128]. Considering the long generation time 
of oaks and the difficulty of juvenile growth in occupied 
forests, the expected changes in allele frequency to adapt 
to increased winter precipitation in the northern popula-
tions (RONA > 0.6) may not be achievable through stand-
ing genetic variation alone.

Under the emission model of intensified global warm-
ing (RCP8.5), southward migration over long distances 
(> 200 km) will increase to minimize forward genetic off-
set. Although we accounted for migration in estimating 
genetic offset, the northernmost and southeastern popu-
lations consistently showed relatively high local, forward, 
and reverse offsets. Our results indicate that no cur-
rent populations across the distribution of Q. longinux 
are preadapted to future climates in these regions. The 
northern and southeastern populations are crucial 
genetic sources for climatic adaptation in other regions 
and should be prioritized in conservation strategies and 
protection efforts. Moreover, the rugged topography in 
mountainous regions may further hamper the movement 
of populations to higher elevations. Assisted gene flow 
from other populations preadapted to future climates 
may help marginal populations mitigate the effects of cli-
mate change [129]. For example, southern populations 
(e.g., HC) may act as potential sources of adaptation to 
high temperatures and seasonal arid climates for popu-
lations at higher altitudes and latitudes where higher 
future temperatures are predicted. However, the source 
populations must be selected carefully to ensure genetic 
compatibility with the sink populations and new environ-
ments [129].
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