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Abstract
Background Genomic selection (GS) is an efficient breeding strategy to improve quantitative traits. It is necessary to 
calculate genomic estimated breeding values (GEBVs) for GS. This study investigated the prediction accuracy of GEBVs 
for five fruit traits including fruit weight, fruit width, fruit height, pericarp thickness, and Brix. Two tomato germplasm 
collections (TGC1 and TGC2) were used as training populations, consisting of 162 and 191 accessions, respectively.

Results Large phenotypic variations for the fruit traits were found in these collections and the 51K Axiom™ SNP 
array generated confident 31,142 SNPs. Prediction accuracy was evaluated using different cross-validation methods, 
GS models, and marker sets in three training populations (TGC1, TGC2, and combined). For cross-validation, LOOCV 
was effective as k-fold across traits and training populations. The parametric (RR-BLUP, Bayes A, and Bayesian LASSO) 
and non-parametric (RKHS, SVM, and random forest) models showed different prediction accuracies (0.594–0.870) 
between traits and training populations. Of these, random forest was the best model for fruit weight (0.780–0.835), 
fruit width (0.791–0.865), and pericarp thickness (0.643–0.866). The effect of marker density was trait-dependent and 
reached a plateau for each trait with 768−12,288 SNPs. Two additional sets of 192 and 96 SNPs from GWAS revealed 
higher prediction accuracies for the fruit traits compared to the 31,142 SNPs and eight subsets.

Conclusion Our study explored several factors to increase the prediction accuracy of GEBVs for fruit traits in tomato. 
The results can facilitate development of advanced GS strategies with cost-effective marker sets for improving fruit 
traits as well as other traits. Consequently, GS will be successfully applied to accelerate the tomato breeding process 
for developing elite cultivars.
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Background
Tomato (Solanum lycopersicum L.) is a major vegetable 
crop cultivated worldwide and has been intensively stud-
ied in the Solanaceae family. Since fruit traits are impor-
tant in this crop, great efforts have been made for genetic 
dissection and breeding. Several QTL associated with 
these traits, including fruit weight, shape, and locule 
number, have been identified using bi-parental popula-
tions and germplasm collections [1–7]. Of these, major 
QTL have been used to improve fruit traits via marker-
assisted selection (MAS) in breeding programs but this 
approach has a limitation for minor QTL with small 
effects [8, 9].

Genomic selection (GS) was proposed as an effective 
breeding strategy for improving complex quantitative 
traits by predicting genomic estimated breeding values 
(GEBVs) of individuals [10]. GS provides a way to over-
come the limitations of MAS because GEBVs are deter-
mined based on effects of genome-wide markers that 
can capture both major and minor QTL [11–13]. Marker 
effects are estimated using both genotypic and pheno-
typic data of a training population in GS models and then 
are used to predict GEBVs of selection candidates. GS has 
been successfully implemented in animal breeding pro-
grams for increasing genetic gains [14]. With advances 
in genome sequencing and genotyping technologies, GS 
has been extensively studied in crop species, especially 
cereals such as wheat, maize, and rice [15]. For vegetable 
crops, the prediction accuracy of GEBVs was investigated 
for fruit traits and capsaicinoid contents in chili pepper 
[16, 17]. GS was also studied for fruit traits, earliness, 
heat tolerance, and disease resistance in tomato [18–24]. 
These studies suggested that GS is a promising tool to 
accelerate plant breeding cycles for quantitative traits.

Several statistical models for GS have been developed 
based on parametric and non-parametric methods. 
These have different assumptions to estimate marker 
effects for GEBVs and model performance can depend 
on the genetic architecture of quantitative traits [25, 
26]. As parametric models, ridge regression-best linear 
unbiased prediction (RR-BLUP) and Bayesian models 
(e.g. BayesA and Bayesian LASSO) have been commonly 
used for additive genetic effects in crop species [15]. The 
RR-BLUP model assumes that all markers have common 
variances with small effects, while the Bayesian models 
allows different effects and variances of markers with 
various degrees of shrinkage [10, 27, 28]. The non-para-
metric models such as reproducing kernel Hilbert space 
(RKHS), support vector machine (SVM), and random 
forest (RF) have been known to be better for capturing 
non-additive genetic effects and multi-variates relative 
to parametric models [29–31]. For RKHS, the Euclidian 
genetic distance based Gaussian kernel is used to pre-
dict GEBVs with a smoothing parameter to regulate the 

distribution of marker effects [29, 32]. Based on several 
kernel methods, SVM can analyze non-linear relation-
ships between phenotypes and genotypes for GS [33]. 
The RF model uses an ensemble of decision trees and 
randomly selected subsets of predictor variables as can-
didates for splitting tree nodes [34, 35]. In addition to 
the GS model, training population and marker density 
also affect the prediction accuracy of GEBVs [13, 36–39]. 
The size and genetic diversity of training populations 
are important to enable reliable predictions in GS [15, 
37, 40–43]. Generally, prediction accuracy increases as 
training populations are larger. For genetic diversity, high 
levels of accuracy in GS can be obtained from training 
populations consisting of individuals with different pedi-
grees and genetic backgrounds. High-density markers 
across genome also lead to increase in prediction accu-
racy by capturing LD between marker and QTL [44, 45]. 
However, the effect of marker density depends on several 
factors including species, population types, and traits 
[46–48].

The present study was conducted to investigate the 
prediction accuracy of GEBVs for five fruit traits (fruit 
weight, fruit width, fruit height, pericarp thickness, and 
Brix) using two tomato germplasm collections (TGC1 
and TGC2). These GS panels consisted of 162 and 191 
accessions with diverse genetic variations and were 
independently used as training populations along with a 
combined population for analysis. Prediction accuracy 
was evaluated using different cross-validation methods, 
GS models, and marker sets in three training popula-
tions (TGC1, TGC2, and combined). Both parametric 
and non-parametric models were used to evaluate their 
performances for the fruit traits. To assess an effective 
marker density for each trait, eight subsets of markers 
were generated from the confident 31,142 genome-wide 
SNPs. In addition, two GWAS-based marker sets of 192 
and 96 SNPs were used to improve prediction accuracy 
with small numbers of markers. The results from our 
study will accelerate GS in tomato breeding programs 
by enhancing prediction accuracy with a cost-effective 
method.

Results
Phenotype variation and genetic diversity in training 
populations
Both TGC1 (n = 162) and TGC2 (n = 191) showed wide 
ranges of phenotypic variations for five fruit traits 
(Table  1). Fruit weight ranged from 17.39 to 186.92  g 
with a mean of 76.90  g in TGC1 and 12.02 to 262.77  g 
with a mean of 68.94 g in TGC2. The phenotypic varia-
tions of fruit width and fruit height in TGC1 were 
24.68–74.36  mm with a mean of 48.83  mm and 29.90–
83.19 mm with a mean of 51.48 mm, respectively. These 
traits showed similar levels of variations in TGC2: 
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23.17–86.62  mm with a mean of 47.44  mm and 23.11–
92.77 mm with a mean of 44.65 mm for fruit height. For 
pericarp thickness, we observed 2.24–8.60 mm in TGC1 
and 3.80–7.22 mm in TGC2 with means of 5.94 mm and 
5.47 mm. Brix ranged from 3.84 to 7.86% with a mean of 
5.37% in TGC1 and 3.07 to 8.09% with a mean of 5.13% 
in TGC2. As shown in TGC1 and TGC2, the combined 
population (n = 353) showed substantial phenotypic vari-
ations for these fruit traits (Table 1).

Fruit weight showed different levels of significant cor-
relations at P < 0.001 relative to fruit width (0.94), fruit 
height (0.51–0.66), and pericarp thickness (0.46–0.60) 
in three training populations (TGC1, TGC2, and com-
bined) (Fig. 1). For fruit height, higher correlation coeffi-
cients were found with fruit weight (0.66) and fruit width 
(0.57) in TGC2 relative to TGC1 (0.51 and 0.42) and the 
combined population (0.60 and 0.51) at P < 0.001. How-
ever, pericarp thickness showed the highest levels of cor-
relation with fruit weight, fruit width, and fruit height 
in TGC1 (Fig.  1). Negative correlation coefficients were 
found between Brix and the other fruit traits, ranging 

from − 0.43 (vs. fruit weight) to -0.53 (vs. pericarp thick-
ness) in TGC1 at P < 0.001, -0.18 (vs. fruit height) to -0.38 
(vs. fruit width) in TGC2 at P < 0.05, and − 0.31 (vs. fruit 
height) to -0.42 (vs. pericarp thickness) in the combined 
population P < 0.001 (Fig. 1).

Genetic diversity in the training populations was evalu-
ated using the confident 31,142 SNPs distributed across 
12 chromosomes. Principal component analysis (PCA) 
indicated diverse genetic backgrounds in both TGC1 
and TGC2 (Fig.  2). In addition, genetic differentiation 
between these training populations was observed based 
on three PCs, explaining 15.6% of the total variance 
(PC1), 7.2% (PC2), and 5.3% (PC3). Population structure 
analysis in the combined population also demonstrated 
genetic differentiation between TGC1 and TGC2 by sep-
arating 353 tomato accessions into seven clusters (Fig. 3). 
The number of accessions per cluster ranged from 10 
(cluster 7) to 102 (cluster 6). Of these, the cluster 2 con-
sisted of 61 TGC1 accessions (89.7%) and seven TGC2 
accessions (10.3%). The majority of accessions (88.0%) in 
the cluster 1 were also derived from TGC1. In contrast, 
clusters 6 and 7 were represented by TGC2 accessions 
(89.2% and 100.0%) (Fig. 3 and Table S1). The other clus-
ters showed high levels of mixture with TGC1 and TGC2 
accessions (31.9–68.1% for each collection).

Prediction accuracy of cross-validation methods and 
genomic selection models
The LOOCV and k-fold (k = 10 and 5) methods for cross-
validation were evaluated in three training populations 
using the RR-BLUP model. In TGC1, LOOCV showed 
0.670 (Brix) to 0.867 (fruit width) of the Pearson corre-
lation coefficients between GEBVs and observed phe-
notypes (hereafter referred to as prediction accuracy) 
(Table  2). Similar levels of prediction accuracy were 
obtained with two k-fold methods, ranging from 0.636 
(Brix) to 0.859 (fruit width) for 10-fold and 0.652 (Brix) 
to 0.853 (fruit width) for 5-fold (Table  2). The LOOCV 
and k-fold methods in TGC2 led to higher prediction 
accuracies for Brix (0.747–0.776) compared to TGC1, 
but lower prediction accuracies for fruit weight (0.741–
0.748), fruit width (0.762–0.766), fruit height (0.687–
0.698), and pericarp thickness (0.614–0.618). As shown 
in TGC1 and TGC2, we found comparable prediction 
accuracies between the cross-validation methods in the 
combined population (Table 2). Since LOOCV was effec-
tive as k-fold for prediction accuracy and has an advan-
tage for computation time, this cross-validation method 
was used for further analysis in this study.

Six GS models, which represent parametric (RR-BLUP, 
BA, and BL) and non-parametric (RKHS, SVM, and RF) 
models, were evaluated for prediction accuracy in three 
training populations. These models showed different 
accuracies between fruit traits and training populations. 

Table 1 Summary of phenotypic data for five fruit traits in three 
tomato training populations
Training 
population

Traita,b Minimum Median Maxi-
mum

Mean ± SDc

TGC1
(n = 162)

FW (g) 17.39 69.87 186.92 76.90 ± 37.06
FWt 
(mm)

24.68 47.62 74.36 48.83 ± 11.12

FH 
(mm)

29.90 53.10 83.19 51.48 ± 8.94

PT 
(mm)

2.24 6.29 8.60 5.94 ± 1.41

Brix 
(%)

3.84 5.22 7.86 5.37 ± 0.76

TGC2
(n = 191)

FW (g) 12.02 55.30 262.77 68.94 ± 47.31
FWt 
(mm)

23.17 46.36 86.62 47.44 ± 13.45

FH 
(mm)

23.11 45.17 92.77 44.65 ± 9.58

PT 
(mm)

3.80 5.52 7.22 5.47 ± 0.62

Brix 
(%)

3.07 5.01 8.09 5.13 ± 0.90

Combined
(n = 353)

FW (g) 13.70 65.49 262.92 73.31 ± 42.67
FWt 
(mm)

23.91 47.17 87.07 48.20 ± 12.42

FH 
(mm)

26.44 48.92 95.91 48.06 ± 9.29

PT 
(mm)

2.52 5.81 8.28 5.75 ± 1.07

Brix 
(%)

3.28 5.13 8.12 5.27 ± 0.83

aFW (fruit weight), FWt (fruit width), FH (fruit height), and PT (pericarp thickness)
bThe phenotypic data of three training populations were corrected for 
environmental effects using the best linear unbiased prediction (BLUP)
cStandard deviation
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In TGC1, RF showed the highest levels of prediction 
accuracy for fruit weight (0.835), pericarp thickness 
(0.866), and Brix (0.702), while RKHS was the best model 
for fruit width (0.870) and fruit height (0.822) (Table 3). 
Similarly, the highest prediction accuracies were found 
with RF for fruit weight (0.780), fruit width (0.791), and 
pericarp thickness (0.643) in TGC2. RKHS and SVM 
provided better performance for fruit height (0.700) 
and Brix (0.797) relative to the other models (Table  3). 

Furthermore, RF revealed the best performance across 
three traits in the combined population: fruit weight 
(0.812), fruit width (0.834), and pericarp thickness 
(0.807) (Table 3 and Table S2). For fruit height and Brix, 
the highest prediction accuracy was shown with RKHS 
and SVM, respectively.

Fig. 2 Principal component analysis (PCA) of the 353 accessions from both TGC1 and TGC2 with 95% confidence ellipses. Three principal components 
(PC1, PC2, and PC3) based on the confident 31,142 SNPs are shown in the plots and the numbers in parenthesis indicate genetic variations explained by 
each PC

 

Fig. 1 Phenotypic distribution and correlation between five fruit traits in three training populations, (A) TGC1 (n = 162), (B) TGC2 (n = 191), and (C) com-
bined (n = 353). The phenotypic data were corrected for environmental effects using the best linear unbiased prediction (BLUP). Each box shows histo-
grams (diagonal), the Pearson correlation coefficients (upper right diagonal), and pairwise scatter plots (lower left diagonal) between traits. The fruit traits 
are presented by FW (fruit weight), FWt (fruit width), FH (fruit height), PT (pericarp thickness), and Brix. ***P < 0.001, **P < 0.01, and *P < 0.05
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Genomic selection with different marker sets
To assess the effect of marker density for prediction 
accuracy, the eight subsets of SNPs (12,288, 6,144, 3,072, 
1,536, 768, 384, 192, and 96) were generated from the 
confident 31,142 SNPs. Prediction accuracy was esti-
mated using RF (fruit weight, fruit width, pericarp 
thickness), RKHS (fruit height), and SVM (Brix) in the 
combined population. Most of the subsets showed lower 
accuracies relative to the 31,142 SNPs, ranging from 
0.753 to 0.795 (fruit weight), 0.783 to 0.830 (fruit width), 
0.637 to 0.740 (fruit height), 0.750 to 0.802 (pericarp 
thickness), and 0.748 to 0.766 (Brix) (Fig. 4 and Table S3). 
The number of markers for a plateau ranged from 768 
(Brix) to 12,288 (fruit width).

In addition, two SNP sets were developed based on 
GWAS, which was conducted using the BLUP data of 
five fruit traits in the combined population. The multi-
locus mixed model (MLMM) detected 192 SNPs signifi-
cantly associated with QTL for each trait at P < 0.01 and 
96 SNPs at P < 0.005 (Fig S1). These GWAS-based sub-
sets showed higher levels of prediction accuracy for the 
fruit traits relative to the 31,142 SNPs (Fig. 4 and Table 
S3). The accuracies were 0.821 (Brix) to 0.867 (fruit 

height) for 192 SNPs and 0.762 (Brix) to 0.865 (fruit 
width) for 96 SNPs. We also developed two universal 
sets of 809 and 419 SNPs by combining these SNPs. The 
first set consisted of 131 common SNPs for two to four 
traits and 678 trait-specific SNPs including 115 for fruit 
weight, 109 for fruit width, 142 for fruit height, 162 for 
pericarp thickness, and 150 for Brix (Table S4). For 419 
SNPs, there were 55 common SNPs and 364 trait-specific 
SNPs including 65 for fruit weight, 57 for fruit width, 79 
for fruit height, 86 for pericarp thickness, and 77 for Brix 
(Table S5). These SNPs were distributed across 12 chro-
mosomes with different numbers of SNPs per chromo-
some (Fig. S2). The prediction accuracies estimated with 
RF (fruit weight, fruit width, and pericarp thickness), 
RKHS (fruit height), and SVM (Brix) ranged from 0.790 
(Brix) to 0.858 (fruit width) for 809 SNPs and 0.782 (Brix) 
to 0.854 (fruit width) for 419 SNPs, which were compa-
rable to those of individual SNP sets (Fig. 5).

Discussion
Genomic selection (GS) is an emerging breeding method 
to improve complex quantitative traits using GEBVs in 
crop species. Successful application of GS depends on 

Table 2 Prediction accuracy of cross-validation methods for five fruit traits in three tomato training populations
Training population Methoda Training set size Prediction accuracyb

FWc FWt FH PT Brix
TGC1
(n = 162)

LOOCV 161 0.822 0.867 0.821 0.856 0.670
k-fold 145 (k = 10) 0.823 0.859 0.813 0.847 0.636

129 (k = 5) 0.807 0.853 0.806 0.851 0.652
TGC2
(n = 191)

LOOCV 190 0.748 0.766 0.687 0.618 0.776
k-fold 171 (k = 10) 0.747 0.765 0.698 0.618 0.747

152 (k = 5) 0.741 0.762 0.687 0.614 0.761
Combined
(n = 353)

LOOCV 352 0.758 0.802 0.719 0.765 0.736
k-fold 317 (k = 10) 0.754 0.798 0.715 0.752 0.723

282 (k = 5) 0.741 0.790 0.703 0.748 0.727
aTwo cross-validation methods, leave-one-out cross-validation (LOOCV) and k-fold (k = 10 and 5) were evaluated and each k were iterated in 100 different dividing 
patterns
bPrediction accuracy was estimated using the Pearson correlation coefficients between genomic estimated breeding values (GEBVs) and observed phenotypes. The 
GEBVs were calculated using the confident 31,142 SNPs in the RR-BLUP model
cFW (fruit weight), FWt (fruit width), FH (fruit height), and PT (pericarp thickness)

Fig. 3 An Inferred population structure in the combined population (n = 353) based on the model-based clustering analysis in STRUCTURE v2.3.4. Each 
accession is shown as a single vertical line, which is partitioned into colored segments in proportion to the estimated membership in each of the seven 
clusters. Two tomato collections are indicated by blue (TGC1) and red (TGC2) under the bar plot
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accurate GEBVs of breeding lines for target traits. In this 
study, we investigated the prediction accuracy of GEBVs 
for five fruit traits using two tomato germplasm collec-
tions which consisted of 162 (TGC1) and 191 (TGC2) 
accessions. These collections were genetically differenti-
ated and showed large phenotypic variations for the fruit 
traits, respectively, suggesting that these are suitable as 

training populations for GS analysis. In addition, a large 
population was generated by combining two collections. 
Since the phenotypic data of TGC1 and TGC2 were 
generated in independent field trails, BLUP was used 
to correct for year and location effects in the combined 
population. As a result, three training populations were 
used to assess prediction accuracy for fruit traits with 

Table 3 Prediction accuracy of six genomic selection (GS) models for five fruit traits based on the confident 31,142 SNPs in three 
training populations
GS modela Training population Prediction accuracyb

FWc FWt FH PT Brix
Parametric RR-BLUP TGC1 0.822 0.867 0.821 0.856 0.670

TGC2 0.748 0.766 0.687 0.618 0.776
Combined 0.758 0.802 0.719 0.765 0.736

BA TGC1 0.824 0.868 0.821 0.856 0.673
TGC2 0.744 0.761 0.686 0.624 0.772
Combined 0.775 0.804 0.715 0.765 0.734

BL TGC1 0.816 0.861 0.815 0.853 0.686
TGC2 0.734 0.779 0.679 0.623 0.779
Combined 0.766 0.799 0.708 0.748 0.739

Non-parametric RKHS TGC1 0.828 0.870 0.822 0.859 0.682
TGC2 0.758 0.775 0.700 0.625 0.784
Combined 0.777 0.813 0.738 0.773 0.746

SVM TGC1 0.804 0.851 0.797 0.860 0.690
TGC2 0.755 0.772 0.669 0.594 0.797
Combined 0.778 0.808 0.723 0.767 0.765

RF TGC1 0.835 0.865 0.810 0.866 0.702
TGC2 0.780 0.791 0.641 0.643 0.778
Combined 0.812 0.834 0.728 0.807 0.751

aRidge regression-best linear unbiased prediction (RR-BLUP), BayesA (BA), Bayesian LASSO (BL), reproducing kernel Hilbert space (RKHS), support vector machine 
(SVM), random forest (RF)
bPrediction accuracy was estimated using the Pearson correlation coefficients between genomic estimated breeding values (GEBVs) and observed phenotypes
cFW (fruit weight), FWt (fruit width), FH (fruit height), and PT (pericarp thickness)

Fig. 4 Prediction accuracy of different marker sets for five fruit traits in the combined population (n = 353). The eight subsets of SNPs (12,288, 6,144, 3,072, 
1,536, 768, 384, 192, and 96) were generated from the confident 31,142 SNPs based on their distributions across 12 chromosomes. Two additional sets 
(named with GWAS_192 and GWAS_96) were selected based on genome-wide associated study in the combined population. Genomic estimated breed-
ing values (GEBVs) were estimated using the best models: random forest for fruit weight (FW), fruit width (FWt), and pericarp thickness (PT); reproducing 
kernel Hilbert space (RKHS) for fruit height (FH); and support vector machine for Brix. Prediction accuracy was evaluated based on the Pearson correlation 
coefficients between GEBVs and observed phenotypes
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different cross-validation methods, GS models, and mar-
ket sets in tomato.

For cross-validation, k-fold is commonly used to calcu-
late GEBVs by dividing a data set into k subsets and then 
using the k-1 subsets for training GS models [49]. Leave-
one-out-validation (LOOCV), which is a special case of 
k-fold with k = number of observations, has been also 
used for GS analysis in plants and animals [50–52]. This 
method is an efficient option for cross-validation with 
small sample sizes. We found that the prediction accura-
cies of LOOCV ranged from 0.618 to 0.867, which were 
comparable to 0.618–0.859 for 10-fold and 0.614–0.853 
for 5-fold in the three training populations. In addi-
tion, LOOCV required a shorter running time (3.4  h) 
for 31,142 SNP markers in the RR-BLUP model relative 
to the 10-fold method with 100 iterations (10  h) using 
the Intel Core™ i9-9900 K processor (3.60 GHz) and 128 
GB RAM. This result suggests that LOOCV is a suitable 
cross-validation method for developing a GS strategy in 
tomato breeding programs, depending on population 
sizes.

Several GS models have been developed to estimate 
GEBVs with different assumptions [25, 26]. We used six 
models representing parametric (RR-BLUP, BA, and BL) 
and non-parametric methods (RKHS, SVM, and RF) with 
the default parameter settings. Of these, higher predic-
tion accuracies were found in the non-parametric models 
in three training populations. RF showed higher accu-
racies (0.807–0.834) for three traits (fruit weight, fruit 
width, and pericarp thickness) compared to the other 
models, while RKHS and SVM, were the best models for 
fruit height and Brix, respectively. As shown in this study, 

RF provided the highest prediction accuracy for fruit 
weight in a training population consisting of 96 large-
fruited F1 tomato varieties [24]. However, two paramet-
ric models (GBLUP and Bayesian LASSO) resulted in 
better predictions relative to the non-parametric mod-
els for soluble solids content. A recent study of pepper 
(Capsicum spp.) found higher accuracies for fruit traits 
using the non-parametric models such as RKHS and RF 
relative to the parametric models in a collection of 302 
accessions [16]. RKHS was the best model (0.73–0.84) for 
most of the five traits and RF was also an effective model 
with high levels of prediction accuracy for fruit width, 
fruit weight, and pericarp thickness. The non-parametric 
models have been known to capture non-additive effects 
such as epistasis and genotype x environment interaction 
for genomic prediction [15, 37]. For example, RF accounts 
for both the cumulative effect of individual markers and 
the effect of all interactions among markers in the model. 
In this model, decision trees were constructed by catego-
rizing data using multiple predictor variables [34]. For 
RKHS, a kernel function was used to generate a definite 
matrix which can be effectively used in a liner model [29, 
32]. In contrast, the parametric models are appropriate 
for traits controlled by additive effects [15, 37]. Moreover, 
the model performance can also be affected with differ-
ent parameter settings and thus the effect of optimization 
would be investigated in future.

Marker density is also an important factor that affects 
the prediction accuracy of GEBVs for GS. Although 
genome-wide markers increase prediction accuracy, an 
effective number of markers for prediction varies with 
species, population types, and traits [15, 46, 48]. In this 

Fig. 5 Scatter plots between genomic estimated breeding values (GEBVs) and observed phenotypes for five fruit traits in the combined population 
(n = 353). Two universal marker sets of 809 and 419 SNPs were generated using the 192 and 96 SNPs significantly associated with each trait, respectively. 
GEBVs were estimated using the best models: random forest for fruit weight (FW), fruit width (FWt), and pericarp thickness (PT); reproducing kernel Hil-
bert space (RKHS) for fruit height (FH); and support vector machine for Brix
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study, the eight subsets derived from the 31,142 SNPs 
were used to investigate the effect of marker density on 
the fruit traits. We found that prediction accuracies pla-
teaued with different numbers of SNPs (768 − 12,288), 
depending on traits. This result is consistent with those of 
previous studies in which no meaningful increases of pre-
diction accuracy were found with large numbers of mark-
ers relative to their subsets for fruit traits in tomato and 
pepper [16, 17, 19, 23]. Our study also demonstrates that 
the use of markers associated with QTL is a strategy to 
increase prediction accuracy with small marker sets. The 
192 and 96 SNPs, which were derived from GWAS, pro-
vided higher accuracies than the 31,142 markers in this 
study. Increases in prediction accuracy with QTL-based 
markers were also found in several previous studies. In 
tomato, higher accuracy for bacterial spot resistance 
was obtained using only markers significantly associated 
with QTL compared to the full set of markers as random 
effects [22]. The 98 SNPs from GWAS increased predic-
tion accuracy for capsaicinoid content relative to 18,029 
SNPs in pepper [17]. The effect of QTL-based markers 
for GS was also found in other crops including maize 
[53] and soybean [54]. We developed two GWAS-based 
sets of 809 and 419 SNPs by filtering redundant markers 
between the trait specific sets of 192 and 96 SNPs. These 
SNPs resulted in high levels of prediction accuracy across 
the fruit traits, ranging from 0.790 to 0.858 for 809 SNPs 
and 0.782 to 0.854 for 419 SNPs, suggesting that these 
marker sets can be an efficient tool to improve multiple 
fruit traits simultaneously via GS in tomato breeding 
programs.

In conclusion, we investigated prediction accuracy of 
GEBVs for GS using three training populations in tomato. 
For cross-validation, LOOCV was effective as k-fold 
(k = 10 and 5) and showed an advantage for computation 
time in the training populations with up to 353 acces-
sions. Six GS models showed different prediction accura-
cies and the highest accuracies were obtained from the 
non-parametric models, RF (fruit weight, fruit width, and 
pericarp thickness), RKHS (fruit height), and SVM (Brix) 
across the training populations. This suggests that the 
best GS model depends on trait of interest and training 
population. The effect of marker density was also differ-
ent between the five fruit traits. Furthermore, two small 
SNP sets, consisting of 192 and 96 from GWAS, showed 
higher accuracies compared to the genome-wide 31,142 
SNPs. Our results will facilitate GS pipeline development 
and application in tomato breeding programs.

Methods
Plant materials
Two tomato germplasm collections, TGC1 (n = 162) and 
TGC2 (n = 191), were used as training populations in this 
study. The 162 tomato accessions of TGC1 were derived 

from seven countries including India, China, Turkey, and 
Israel (Table S1). This collection consisted of determinate 
and semi-determinate accessions with diverse morpho-
logical variations of fruit traits. For TGC2, 98 contem-
porary breeding lines were assembled from the National 
Institute of Horticultural and Herbal Science (NIHHS) 
in Rural Development Administration (RDA), Republic 
of Korea (ROK). Additional 93 accessions were derived 
from the National Agrobiodiversity Center (NAC) in 
RDA, the Germplasm Resources Information Network 
(GRIN) in the U.S. Department of Agriculture, the C. 
M. Rick Tomato Genetics Resource Center (TGRC), and 
Sejong University (Table S1). All of these tomato acces-
sions are indeterminate and also have a broad spec-
trum of phenotypes for fruit traits, originating from 18 
countries including ROK, Russia, USA, Uzbekistan, and 
China.

Phenotypic evaluation
Field trials were conducted to evaluate phenotypic varia-
tions of fruit weight, fruit width, fruit height, pericarp 
thickness, and Brix over three years (2018–2020) for 
TGC1 and two years (2016–2017) for TGC2. Plants were 
first grown in a greenhouse, and six to seven-week-old 
seedlings were transplanted into plastic-covered fields 
(high-tunnel) using a randomized complete block design 
with three to four replications per genotype. For pheno-
typic evaluation, fully ripe fruits were harvested from the 
2nd -4th flowering clusters and 4–10 fruits per replicate 
for each genotype were used. Image analysis was con-
ducted using the Tomato Analyzer (TA) v4.0 software 
[55] for fruit width, fruit height, and pericarp thickness. 
Fruits were longitudinally and horizontally cut through 
the center, placed cut-side down on a scanner, and digi-
talized according to the user manual of TA. For fruit 
weight, we used average values of fruits per replicate. Brix 
was measured using a PAL-1 refractometer (ATAGO, 
WA, USA). The phenotypic data collected from TGC1 
and TGC2 were corrected for environmental effects 
using the best linear unbiased prediction (BLUP) in the R 
package “lme4” [56], respectively. In addition, these data 
were combined to generate phenotypic data for a large 
training population based on BLUP. The resulting pheno-
typic data for three training populations (TGG1, TGC2, 
and combined) were separately used for further analysis.

Genotyping and genetic diversity analysis
Genomic DNA was extracted from fresh and young leaf 
tissues from four-week-old seedlings using a modified 
cetyl trimethyl ammonium bromide (CTAB) method 
[57]. The isolated DNA pellets were resuspended in 
T1/10E buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) 
and their concentrations were adjusted to 50 ng/uL using 
the NanoDrop™ One spectrophotometer (Thermo Fisher 
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Scientific, Waltham, MA, USA). These DNAs were geno-
typed using the 51K AxiomTM tomato array with 51,912 
SNPs [58] according to the manufacturer’s instructions. 
For SNP calling, the hybridization signals in the form of 
CEL files were processed using the Affymetirx® Power 
Tools software package v1.18. The high-quality SNP were 
filtered based on < 10% of missing data rate and > 5% 
of minor allele frequency, and then missing data were 
imputed using BEAGLE v5 with default parameter set-
ting [59]. The resulting 31,142 SNPs, which were com-
mon in TGC1 and TGC2, were used for further analysis.

To evaluate genetic diversity in TGC1 and TGC2, prin-
cipal component analysis (PCA) was conducted using 
the prcomp function in R (R core team, 2015) and the 
results were visualized in the R package “factoextra” [60]. 
In addition, a population structure in these collections 
was inferred using the STRUCTURE v2.3.4 program. The 
model, which allows for admixture and correlated allele 
frequencies, was used to determine the best K (number 
of clusters). For this analysis, a series of K (1–10) was 
tested in 10 independent simulations for each K with a 
burn-in of 20,000 iterations and a Markov Chain Monte 
Carlo (MCMC) run length of 100,000 iterations. The best 
K was then determined using the delta K method [61]. 
A population structure matrix (Q matrix) was then gen-
erated using the membership coefficients of the tomato 
accessions based on the best K.

Assessment of prediction accuracy for genomic selection
Two cross-validation methods, leave-one-out cross-val-
idation (LOOCV) and k-fold [62], were used to evalu-
ate performance using the ridge regression-best linear 
unbiased prediction (RR-BLUP) model in three training 
populations (TGC1, TGC2, and combined). For cross-
validation, a training population was divided into training 
and validation sets, and then GEBVs were calculated for 
five fruit traits. For k-fold, 5 and 10 groups were gener-
ated from the training population, respectively. Of these, 
one group was randomly assigned as a validation set and 
the other groups were used as a training set. This was 
iterated in 100 times using the 5 or 10 different divid-
ing patterns to predict GEBVs for each trait. Similarly, a 
training population with n individuals was divided into a 
training set (n-1 individuals) and a validation set (a sin-
gle dividual) with n iterations. Prediction accuracy was 
determined based on the Pearson correlation coefficients 
between GEBVs and observed phenotypes for each trait. 
A cross-validation method was selected based on accu-
racy and time efficiency for further analysis.

Six genomic selection (GS) models were used to assess 
the prediction accuracy of GEBVs for five fruit traits in 
three training populations. Of these, ridge regression-
best linear unbiased prediction (RR-BLUP), BayesA 
(BA), and Bayesian LASSO (BL) were used as parametric 

models. These models were implemented in the R pack-
ages “rrBLUP” version 4.6.2 [63] for RR-BLUP and 
“BGLR” version 1.1.0 [64] for both BA and BL using the 
default parameter settings. The burn-in of 500 and run 
length of 1,500 were used for the Bayesian models. We 
also included three non-parametric models including 
reproducing kernel Hilbert space (RKHS), support vec-
tor machine (SVM), and random forest (RF). For RKHS, 
the kinship.BLUP function of rrBLUP was implemented 
with the Gaussian kernel based on the Euclidean distance 
between individuals. The radial basis function (RBF) ker-
nel for SVM was used to predict GEBVs with the svm 
function implemented in the R package “e1071” version 
1.7–13 [65]. For this model, the regularization parameter 
was set to one and both genotypic and phenotypic data 
were internally scaled to zero mean and unit variance as 
default. The RF model was implemented in the R pack-
age “randomForest” version 4.7–1.1” with decision trees 
[66]. The default values were used for the number of trees 
(ntree = 500) and number of SNPs randomly selected at 
each tree node (mtry = sample size/3), while the mini-
mum node size was set to 10.

To investigate the effect of marker density, eight sub-
sets (12,288, 6,144, 3,072, 1,536, 768, 384, 192, and 96) 
were generated from the confident 31,142 SNPs, which 
were filtered from all markers in 51-K SNP array. The 
SNPs in these subsets were selected based on their dis-
tributions across 12 chromosomes. In addition, two 
marker sets of 192 and 96 SNPs for each fruit trait were 
derived from genome-wide association studies (GWAS) 
in the combined population. Marker-trait associations 
in GWAS were identified using the multi-locus mixed 
model (MLMM) [67] implemented in genomic associa-
tion and prediction integrated tool (GAPIT) [68]. To cor-
rect population structure and familial relatedness, Q and 
kinship matrices were used as covariates. The kinship 
matrix was generated using the VanRaden algorithm [69]. 
The SNPs associated with QTL were selected based on 
P < 0.01 (192 SNPs) and P < 0.005 (96 SNPs). These SNPs 
were also used to develop a universal set across all of five 
fruit traits.
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