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Abstract 

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. 
It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there 
is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting 
the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits 
(structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Hima-
layas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) 
to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf 
morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were 
observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well 
as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount 
of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The 
trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were 
stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important 
for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments 
at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher 
elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.
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Background
 The response of an invasive species to climate change 
is contingent upon its functional ecology [1]. Functional 
trait responses in plants serve as valuable indications of 
their successful adaptation to both biotic and abiotic ele-
ments of their environment [2–4]. Plant functional traits 
play a significant role in controlling growth rate, mortal-
ity, and dispersal over different time periods and regions 
[5]. It is, therefore, crucial to comprehend how invasive 
plants adapt to environmental gradients by altering their 
functional traits [6]. Leaves, which are directly involved 
in respiration, transpiration, and carbon fixation, play 
a vital role in ensuring the long-term survival of plants 
[7]. Modifications in the functional attributes of leaves, 
including leaf shape, lamina area, biomass, water content, 
and specific leaf area (SLA), significantly impact growth 
and development, particularly in response to fluctuations 
in environmental resources [4, 8]. The nutrient content in 
the leaves may provide insight into the nutrient utilisa-
tion strategy of a particular species [9, 10]. Leaf traits and 
their trade-offs can be linked to invasion success along 
an elevational gradient since they play an important role 
in influencing plant performance and fitness in diverse 
environments [11, 12].

In particular, leaf area, SLA, and leaf thickness can 
influence plant growth, carbon balance, and water use 
efficiency and are critical factors in determining the abil-
ity of a plant to establish and sustain itself in a new envi-
ronment [12]. A small leaf area restricts the absorption of 
incident solar radiation at higher elevations, and the rate 
of evapotranspiration lessens the harm from UV radia-
tion and strong winds [7, 13]. SLA is an important trait 
that influences plant tolerance, competitiveness [8], leaf 
lifespan, photosynthetic capacity, and growth rate [14, 
15]. In resource-constrained environments, such as those 
found at higher elevations, invasive plants may have a 
competitive advantage due to leaf traits associated with 
high SLA and high photosynthetic rates [4]. The corre-
lation between leaf traits and invasion success along an 
elevational gradient can be complex, contingent upon 
the environmental conditions and biotic interactions that 
exist at each site. Thus, to ascertain how an invasive spe-
cies adjusts to elevation, an in-depth investigation of the 
functional attributes of its leaves is required [16].

Parthenium hysterophorus L. (ragweed parthenium; 
Asteraceae) is an invasive herbaceous plant native to 
Mexico, the Caribbean, Central America, and South 
America [17, 18]. The species is presently distributed 
throughout tropical, subtropical, and semiarid regions 
and is also found in warm and sub-temperate areas [19, 
20]. Strong colonisation abilities, a robust seed bank, 
high propagule pressure, resistance to a broad spectrum 
of temperature and water stresses, and an annual life 

cycle all contribute to the high invasion potential of P. 
hysterophorus [19, 21, 22]. In Nepal, P. hysterophorus has 
been found growing at heights of up to 2,000 m above sea 
level [23], and it has been proposed that climate change 
may significantly increase this elevation. Rathee et al. [20] 
found that P. hysterophorus migrates to higher elevations 
due to an increase in biomass allocated to reproductive 
organs. The ability of the plant to modify its aboveground 
height, root biomass, capitula count, and seed mass also 
has an impact on this migration. However, variations in 
leaf traits and associated trade-offs might affect the abil-
ity of P. hysterophorus to adapt to hilly environments. 
Investigations into the trait-trait scaling interactions of 
invading species are necessary to comprehend the mech-
anisms underpinning adaptability in invaded ecosystems 
[24]. On the basis of this rationale, we hypothesized 
that examining qualitative traits might provide insights 
into the role of leaf morphological and ecophysiological 
characteristics in facilitating invasion at higher altitudes. 
Therefore, the objective of this study was to analyse the 
variability and interdependence (trade-offs) of fourteen 
functional leaf traits (structural, photosynthetic, and 
nutritional attributes) of P. hysterophorus at altitudes 
ranging from 700 to 1,800 m in the western Himalayas, 
India. The traits studied in this research were: leaf area, 
leaf dry matter content, specific leaf area, leaf mass per 
area, leaf thickness, leaf dry weight (structural attributes), 
total chlorophyll content, chlorophyll a and b and total 
carotenoid content, photosynthetic efficiency (photo-
synthetic capacity), total nitrogen and total phosphorus 
content, and leaf water content (nutrient content). Study-
ing various plant traits, especially leaf attributes, aids in 
a better understanding of the invasion process [25]. The 
study will contribute to the understanding of how inva-
sive plants adapt by altering their ecophysiological traits 
and offer a theoretical and functional approach for fore-
casting non-native plants with the highest likelihood of 
becoming invasive.

Methods
Study system
 The study was carried out at an elevation gradient of 
700 to 1,800 m above sea level in the western Himala-
yan Shiwalik ranges (Fig. 1) in the years 2021–2022. The 
study sites were located along a transect between 30° 
50′ 101′′N, 76° 57′ 913′′E (700 m) and 31° 02′ 053′′N, 
77° 079′ 198′′E (1,800 m) in two districts (Solan and 
Shimla) of Himachal Pradesh (India). In the Solan dis-
trict, the temperature fluctuated between 0.6 and 32.2 
°C, with an average annual precipitation of 1140.86 mm. 
In the Shimla district, the temperature varied from 2.5 
to 26°C, with an average annual precipitation of 999.64 
mm (source: https:// www. cgwb. gov. in/ sites/ defau lt/ files/ 

https://www.cgwb.gov.in/sites/default/files/2022-10/shimla.pdf
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2022- 10/ shimla. pdf ). Human habitation and agricultural 
practices are the primary causes of disturbance at lower 
elevations (up to 900 m), and a sizable portion of the 
local flora is made up of non-native species [26]. How-
ever, at higher elevations (> 1000 m), where agriculture, 
the lumber industry, grazing land, and tourism are vital, 
subtropical pine with broadleaf forest is more prevalent 
[26].

Site selection and plot layout
Study sites were chosen at regular intervals of 300–400 
m in the selected transect. Plots measuring 20 × 40 m 
(Fig.  1) were established at elevations of 700 m, 1,100 
m, 1,400 m, and 1,800 m, with a distance of 50 m from 
the roadside. Roadside locations can serve as routes for 
the introduction and dissemination of invasive species. 
Human activities, such as transportation and construc-
tion, can contribute to the dispersal of invasive plants. 
Studying plots located along roadsides helps evaluate 
the possible influence of these pathways on the spread 
of non-native species [27]. These plots were split into 
10 × 10 m for the documentation of shrubs and 1 × 1 m 
for recording herbaceous species. The vegetation com-
position of each plot was examined using a systematic 
quadrat sampling approach. An analysis of the vegetation 
composition revealed that, except for the plot at 1,800 
m, P. hysterophorus is the most common invasive spe-
cies, covering ≥ 20% of the elevational gradient. Professor 
R.K. Kohli validated the plant, and a voucher specimen 
(Voucher # PAN 21463) was deposited in the herbar-
ium at Panjab University in India. The arrangement of 

plots and plant selection from each 1 × 1 m quadrat are 
described in Fig. 1. The plant material was collected from 
the selected sites. The measurements were taken when 
the plants were at a robust developmental stage. Since the 
collected plants were growing wild in the selected sites or 
plots and these were not on any private or government 
recognized forest land, no permission is required. Each 
site included a mixture of shrubs (Lantana camara L., 
Xanthium strumarium L., and Calotropis procera (Aiton) 
Dryand.) and herbs (Solanum nigrum L., Plantago major 
L., Solanum tuberosum L., Senna tora (L.) Roxb., Son-
chus asper (L.) Hill, Abutilon indicum (L.) Sweet, Med-
icago sativa L., Cannabis sativa L., Achyranthes aspera 
L., Oxalis corniculata L., and Capsella bursa-pastoris (L.) 
Medik) with scattered trees (Acacia nilotica (L.) Delile, 
Albizia julibrissin Durazz., Pinus spp., Leucaena leuco-
cephala (Lam.) de Wit, and Prosopis juliflora (Sw.) DC.).

Quantification of leaf traits and nutrient content
In the current investigation, adult P. hysterophorus 
plants that showed consistent development and were not 
obstructed by other plants were selected for the assess-
ment of leaf traits. To evaluate functional trait values, 
we selected three healthy, mature plants from each 1 × 1 
m quadrat, tagged one leaf per plant, and computed an 
average of those values for each quadrat. In other words, 
one leaf trait value was acquired for each 1 × 1 m quad-
rat containing P. hysterophorus. The leaves that looked 
healthy, had intact lamina, were exposed to the sunlight, 
and exhibited no symptoms of disease or pest infestation 
were chosen and tagged. The leaf traits examined in the 

Fig. 1 Map of the study area representing study sites at different elevations (700 m, 1100 m, 1500 m, and 1800 m) in the western Himalayas, India, 
and sketch diagram showing plot establishment and plant selection method for leaf trait measurement in the study sites

https://www.cgwb.gov.in/sites/default/files/2022-10/shimla.pdf
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study were leaf area (LA;  mm2), leaf dry matter content 
(LDMC; mg  g−1), specific leaf area (SLA;  mm2  mg−1), 
leaf mass per area (LMA; mg  mm−2), leaf thickness (LT; 
mm), and leaf dry weight (LDW; mg). The lamina of the 
tagged leaves was measured in the field using a leaf area 
metre (CI-202; CID Bio-Science, USA). The tagged leaves 
were collected, weighed, and labelled based on the eleva-
tion at each location, and transported to the lab to deter-
mine the leaf water content (LWC; mg) and LDW. The 
leaves were dried for 72 h at 60 °C in a hot air oven before 
being weighed with an electronic weighing balance (A&D 
Co., Japan; accuracy = 0.10 mg). The leaf water content 
was measured by calculating the difference between the 
weight of the fresh leaf and the weight of the dry leaf. 
Leaf mass per area (LMA) was calculated as the leaf dry 
mass per unit leaf area, and the SLA was calculated by 
dividing the leaf area by its dry mass [28]. The formulas 
used for calculating various quantitative leaf traits are 
given in Table S1, Supplementary material. Leaf thickness 
was measured using a digital Vernier calliper with an 
accuracy of 0.01 mm. For every elevational site, leaf sam-
ples were collected, dried, and homogenised. The acid 
digestion method was used to assess the total nitrogen 
(mg  g−1) and total phosphorus (mg  g−1) contents of the 
leaf samples [29].

Assessment of photosynthetic features
The amounts of total chlorophyll (TChl; µg  mg−1), chlo-
rophyll a and b (Chl a and Chl b; µg  mg−1), total carot-
enoid (TCaro) content (µg  mg−1), and photosynthetic 
efficiency (Fv/Fm) were quantified in the selected plant 
leaves. The photosynthetic efficiency of the labelled 
leaves was quantified in the field using a pulse-modulated 
chlorophyll fluorometer (OS-30p; OptiSci., USA). Chlo-
rophyll was extracted from 20 mg of fresh leaves in 4 mL 
of dimethyl sulfoxide. The resulting solution was subse-
quently incubated at 60 °C for one hour, following the 
methodology described by Hiscox and Israelstam [30]. 
The absorbance of the extractant was measured at 645, 
663, and 470 nm using a Shimadzu UV-1800 spectro-
photometer, with dimethyl sulphoxide as a blank. TChl, 
Chl a, and Chl b contents were determined according to 
the formulas given by Arnon [31]. In addition, the TCaro 
content was determined using the methodology outlined 
by Lichtenthaler and Wellburn [32].

Statistical analyses
The impact of elevation on the leaf traits of P. hysteropho-
rus was investigated employing linear regression models. 
When linear regression models were deemed inadequate 
for fitting the data, quadratic regression models were 
applied to optimise model performance. In all the mod-
els, elevation functioned as a numerical predictor, while 

the trait characteristics of each group at different eleva-
tions were considered the dependent variables. After 
verifying the normal distribution of the data, regression 
models were applied. The standardised major axis (SMA) 
regressions were used to examine the trade-offs among 
the functional traits of leaves, as it is a widely employed 
statistical tool commonly used for allometric investiga-
tions [33]. The ‘smatr’ software was used to estimate 
SMA regressions using trait data from each elevational 
population. SMA was done to determine the best-fitting 
scaling relationship between two traits on a log-log axis. 
In addition, the coefficient of determination  (R2) for SMA 
was plotted across the range of elevations using either 
linear or polynomial regression. The statistical analyses 
were carried out using R software (version 4.1.2) devel-
oped by the R Core Team.

Results
Variation in leaf functional groups along an elevation 
gradient
The multivariate analysis of variance, using Pillai’s test, 
showed substantial differences in leaf morphologi-
cal traits and nutrient content  (F(1,3) = 27.9, p < 0.001), 
as well as leaf photosynthetic parameters  (F(1,3) = 14.16, 
p < 0.001), along the elevational gradient.

Leaf morphological features vary across different 
elevations
All the leaf morphological traits that were investigated 
exhibited significant variations along the elevational gra-
dient (Table  1). With elevation, SLA showed an inverse 
hump-shaped pattern (Fig.  2b). LA and LDW declined 
linearly with increasing elevation (Fig.  2a, c), while 
LMA, LDMC, and leaf thickness exhibited a hump-
shaped pattern with increasing elevation (Fig.  2d, e, f ). 
The model-adjusted R2 values were highest for SLA and 
LMA (R2 = 0.36, p < 0.001) (Table  1). The leaf area (LA) 
was measured to be greatest at an altitude of 700 m 
(2,357.5 ± 97.8  mm2), while it was 1,727.3 ± 100.1  mm2 
at 1,500 m (Fig. 1a). LDW at an altitude of 1,100 m was 
measured to be 133.8 ± 7.53 mg, whereas at an altitude of 
1,800 m, it was found to be 76.5 ± 6.58 mg (Fig. 1b). The 
minimum specific leaf area (SLA) was measured at an 
elevation of 1,100 m (16.98 ± 0.33  mm2  mg−1), while the 
maximum SLA was observed at 1,800 m (23.52 ± 0.46 
 mm2  mg−1). At an elevation of 1,100 m, the LMA was 
the highest (0.06 ± 0.001 mg  mm−2), whereas at 1,800 m, 
it was the lowest (0.043 ± 0.001  mg  mm−2). The LDMC 
at an altitude of 1,500 m was approximately 267.5 ± 3.80 
mg  g−1, whereas at an altitude of 1,800 m it was approxi-
mately 200.7 ± 4.89 mg  g−1.

The LDMC declined with elevation, except at 1,500 
m. It was highest (255.9 ± 5.61 mg  g−1)  at 700 m 
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elevation and the lowest (200.7 ± 4.89 mg  g−1) at 1,800 
m. A marginal increase in leaf thickness was observed 
along the elevation gradient.

Elevation‑dependent variations in leaf photosynthetic 
properties
Chlorophyll b and photosynthetic efficiency decreased 
linearly with elevation, but the contents of Chl a, TChl, 
and TCaro showed a hump-shaped pattern with eleva-
tion (Fig.  3). Total carotenoid had the highest model-
adjusted R2 value (R2 = 0.48, p < 0.001), followed by Chl 
a (R2 = 0.43, p < 0.001) and total chlorophyll (R2 = 0.39, 
p < 0.001), while Chl b had the lowest value (R2 = 0.06, 
p < 0.001) (Table 1). Along the 700–1,800 m range, the 
photosynthetic efficiency was between 0.61 and 0.69, 
the Chl a concentration was between 7.40 and 12.61 µg 
 mg−1, and the Chl b concentration was between 0.32 

and 0.60 µg  mg−1. The TChl ranged from 8.71 to 14.19 
µg  mg−1, and TCaro ranged from 2.82 to 4.20 µg  mg−1.

Leaf water and nutrient levels vary at different elevations
As the elevation increased, there were significant changes 
in the leaf water content, nitrogen content, and phos-
phorus content (Table  1). The leaf nutrient content had 
a positive correlation with elevation, although leaf water 
content demonstrated a negative correlation (Fig. 4). The 
highest leaf water content (0.44 ± 0.30 mg) was recorded 
at an altitude of 1,100 m, whereas the lowest (0.24 ± 0.02) 
was found at 1,500 m. The highest leaf nitrogen content 
(3.15 ± 0.06 mg  g−1) was measured at an altitude of 1800 
m, while the lowest (2.37 ± 0.03 mg  g−1) was observed 
at 700 m. Similarly, the highest phosphorus content 
(36.01 ± 0.83 mg  g−1) was found at 1800 m, whereas 
the lowest (25.00 ± 1.09 mg  g−1) was recorded at 700 m 
(Fig. 4c).

Table 1 Linear regression models showing functional trait variations in Parthenium hysterophorus across an elevational gradient

Data is reported up to only two decimal places

Response variables Predictor Estimate Std. Error t‑value  p‑value Multiple R2 Adjusted R2

Leaf area  (mm2) (Intercept) 2843.62 187.68 15.15 < 0.001 0.12 0.12

Elevation −0.65 0.14 −4.51 < 0.001

Leaf dry weight (mg) (Intercept) 155.29 11.5 13.49 < 0.001 0.13 0.12

Elevation −0.04 0.01 −4.64 < 0.001

Specific leaf area  (mm2  mg−1) (Intercept) 40.3 2.6 15.50 < 0.001 0.37 0.36

Elevation 0.0 0.0 8.85 < 0.001

Leaf mass per area (mg  mm−2) (Intercept) 0.0 0.01 0.28 0.78 0.37 0.36

Elevation 0.0 0.0 −8.66 < 0.001

Leaf dry-matter content (mg  g−1) (Intercept) 165.0 28.8 5.72 < 0.001 0.20 0.19

Elevation 0.0 0.0 −4.19 < 0.001

Leaf thickness (mm) (Intercept) 0.08 0.03 2.69 < 0.001 0.11 0.10

Elevation 0.0 0.0 −4.19 < 0.001

Photosynthetic efficiency (Fv/Fm) (Intercept) 0.71 0.02 45.13 < 0.001 0.09 0.09

Elevation −0.0 0.0 −3.86 < 0.001

Chlorophyll a (µg  mg−1) (Intercept) −4.97 1.89 −2.64 < 0.01 0.44 0.43

Elevation 0.0 0.0 −5.76 < 0.001

Chlorophyll b (µg  mg−1) (Intercept) 0.7 0.09 8.38 < 0.001 0.06 0.06

Elevation 0.0 0.0 −3.15 < 0.001

Total chlorophyll content (µg  mg−1) (Intercept) −4.76 2.17 −2.19 0.03 0.40 0.39

Elevation 0.0 0.0 −5.52 < 0.001

Total carotenoid content (µg  mg−1) (Intercept) −1.37 0.5 −2.76 < 0.01 0.48 0.48

Elevation 0.0 0.0 −8.15 < 0.001

Leaf water content (mg) (Intercept) 0.4 0.04 10.27 < 0.002 0.04 0.03

Elevation 0.0 0.0 −2.40 0.02

Leaf nitrogen content (mg  g−1) (Intercept) 3.62 0.03 113.27 < 0.001 0.81 0.81

Elevation 0.0 0.0 −25.25 < 0.001

Leaf phosphorus content (mg  g−1) (Intercept) 44.56 0.47 95.47 < 0.001 0.87 0.87

Elevation −0.01 0.0 −31.4 < 0.001
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Comparing the exponents of scaling in leaf functional 
features
 At each elevation, the four bivariate relationships 
between LA and LDW, LWC and LDW, LA and LT, and 
LDW and LT exhibited variations in both steepness 
and size (Fig.  5; Table  2). The bivariate linkages at each 
elevation exhibited positive relationships, as depicted 
in Fig.  5a–d. The coefficient of determination  (R2) for 
the association between LA and LDW was significantly 
higher at an elevation of 1,800 m (R2 = 0.96, p < 0.001) 
than it was at a lower elevation of 1,100 m (R2 = 0.75, 
p < 0.001) (Table 2). The value of R2 for LWC ~ LDW was 

highest at an altitude of 1,100 m (R2 = 0.92, p < 0.001) 
and lowest at 700 m  (R2 = 0.75, p < 0.001). The high-
est R2 value for the LA ~ LT relationship was observed 
at an altitude of 1,100 m (R2 = 0.27, p < 0.001), while the 
lowest value (R2 = 0.04, p < 0.001) was recorded at 700 
m. The LDW ~ LT was found to have a maximum value 
at 1,100 m (R2 = 0.49, p < 0.001) and a minimum value at 
1,800 m (R2 = 0.08, p < 0.001) (Table  2). In addition, the 
relationship between LA and LDW was not significant at 
700 m and 1,800 m (Fig. 6a, b). At 1,800 m, the associa-
tion between LDW and LT was equally non-significant. 
Except at 1,100 m elevation, LA increased gradually 

Fig. 2 Pattern of leaf functional traits of Parthenium hysterophorus across an elevation gradient: a Leaf area; b Specific leaf area; c Leaf dry weight; d 
Leaf mass per area; e Leaf dry-matter content; and f Leaf thickness. The 95% confidence interval is represented by the shaded area, and the model 
patterns are represented by the line
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and disproportionately as LDW (slope [α] < 1) increased 
(Table  2). Except for LWC ~ LDW at 700 m, slope val-
ues (α) > 1 were recorded for LWC ~ LDW, LA ~ LT, and 
LDW ~ LT at every elevation.

Discussion
The current investigation revealed alterations in leaf 
functional characteristics of P. hysterophorus across an 
elevation range of 700 to 1,800 m. The leaf thickness, 
chlorophyll a, total chlorophyll and carotenoid content, 
and leaf nitrogen and phosphorus content all showed a 

positive correlation with increasing elevation. Never-
theless, the leaf water content (LWC), leaf dry weight 
(LDW), leaf mass per area (LMA), leaf dry matter content 
(LDMC), photosynthetic efficiency, and chlorophyll b 
exhibited a decline. The relationship between LA ~ LDW 
and LWC ~ LDW was more pronounced.

In mountain ecosystems, differences in leaf functional 
traits demonstrate the capacity of invasive species to 
evolve, survive, and proliferate [34]. The current inves-
tigation revealed a decline in the leaf area of P. hystero-
phorus as the elevation increased. Plants frequently use 

Fig. 3 Pattern of Parthenium hysterophorus leaf photosynthetic characteristics: a photosynthetic efficiency, b chlorophyll a, c chlorophyll b, d 
total chlorophyll content, and e total carotenoid content across an elevational gradient. The 95% confidence interval is represented by the shaded 
area, and the model patterns are represented by the line
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Fig. 4 Pattern of (a) leaf nitrogen content, b leaf phosphorus content, and c leaf water content of Parthenium hysterophorus across an elevational 
gradient. The 95% confidence interval is represented by the shaded area, and the model patterns are represented by the line

Table 2 Standardized major axis (SMA) regression showing relationship between traits in Parthenium hysterophorus across an 
elevational gradient

Data is reported up to only two decimal places

Abbreviations: LA Leaf area, LDW Leaf dry weight, LWC Leaf water content, LT Leaf thickness, E Elevation

Leaf trait‑trait relationship E Estimated 
intercepts (β)

95% CI_ intercepts Estimated 
slope (α)

95% CI_slope R2 p‑value

Log_LA  (mm2)
~ Log_LDW (mg)

700 1.81 1.65–1.98 0.76 0.68–0.85 0.77 < 0.001

1100 1.08 0.82–1.33 1.07 0.95–1.19 0.75 < 0.001

1500 1.55 1.43–1.66 0.87 0.81–0.94 0.915 < 0.001

1800 1.49 1.39–1.59 0.93 0.88–0.99 0.96 < 0.001

Log_LWC (mg)
~ Log_LDW (mg)

700 −2.3 −2.51– −2.09 0.89 0.79–0.99 0.75 < 0.001

1100 −2.79 −2.95– −2.64 1.15 1.07–1.22 0.92 < 0.001

1500 −2.56 −2.71– −2.41 1.00 0.93–1.09 0.88 < 0.001

1800 −2.44 −2.61– −2.26 1.02 0.93–1.12 0.87 < 0.001

Log_LA  (mm2)
~ Log_LT (mm)

700 4.94 4.59–5.29 2.18 1.75–2.71 0.04 0.07

1100 5.62 5.17–6.06 3.83 3.16–4.65 0.27 < 0.001

1500 5.81 5.29–6.33 3.59 2.94–4.37 0.21 < 0.001

1800 5.75 5.11–6.40 3.86 3.00–4.96 0.07 0.04

Log_LDW (mg)
~ Log_LT (mm)

700 4.10 3.69–4.52 2.86 2.35–3.48 0.23 < 0.001

1100 4.25 3.90–4.59 3.59 3.06–4.22 0.49 < 0.001

1500 4.88 4.35–5.42 4.11 3.44–4.92 0.36 < 0.001

1800 4.58 3.89–5.27 4.15 3.23–5.32 0.08 0.03
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adaptive strategies to endure low temperatures, which 
typically include lowering heat loss and limiting the 
exposure of internal tissues to the cold  environments. 
The plants at higher elevations have smaller leaf areas and 
thicker leaves [7]. Ke et al. [35] documented that the leaf 
area of 39 herbaceous species decreased with increasing 

altitude in the northern Qinghai-Tibetan Plateau. In our 
study, the SLA first declined and subsequently increased 
with elevation. These results contrast with those of Rixen 
et al. [36], who reported a general decrease in SLA with 
increasing elevation, and Pfennigwerth et  al. [37], who 
found no significant relationship between SLA and 

Fig. 5 Standardized major axis (SMA) regressions depicting the relationships between leaf functional traits across an elevational gradient. a leaf 
area (Log_LA) ~ leaf dry weight (Log_LDW), b leaf water content (Log_LWC) ~ leaf dry weight (Log_LDW), c leaf area (Log_LA) ~ leaf thickness (Log_
LT), and d leaf dry weight (Log_LDW) ~ leaf thickness (Log_LT)

Fig. 6 Pattern of R2 values of the scaling exponents of a LA ~ LDW and b LWC ~ LDW with elevation. LA = leaf area; LDW = leaf dry weight; 
and LWC = leaf water content
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elevation. SLA influences the allocation of nitrogen to 
photosynthetic tissues [11]. Plants with a high SLA allo-
cate more nitrogen to photosynthesis [38]. According to 
Gratani [39], a high SLA and low LMA at higher eleva-
tions are associated with an elevated photosynthetic rate, 
shorter leaf life spans, and reduced water-use efficiency. 
Rising altitude and decreased leaf biomass suggest a 
reduced investment in photosynthetic tissue. Lower leaf 
dry weight (i.e., less leaf tissue) and leaf lamina area (i.e., 
less light interception area) indicate that P. hysterophorus 
produces smaller leaves at higher elevations. Wang et al. 
[40] found that plants are able to regulate temperature 
more effectively in high-light locations by having smaller 
leaves. An increasing amount of leaf thickness indicates 
that a species can maintain leaf tissue throughout an ele-
vation gradient. In a mountain ecosystem, plants enhance 
their photosynthetic efficiency by expanding leaf thick-
ness in response to higher levels of irradiance and water 
stress, as well as reducing temperature with rising eleva-
tion [41, 42]. Within the invaded areas, non-native spe-
cies may occupy niches that align with or diverge from 
their native ranges [43]. This scenario results in the selec-
tion of traits that offer the greatest benefits to the envi-
ronments they invade. Various characteristics such as 
growth rate, resprouting capability, leaf area, leaf N con-
tent, specific leaf area, chlorophyll content, plant height, 
seed mass and its size, number of reproductive branches 
and their distribution, biomass allocation (the ratio of 
above- and below-ground biomass), and alterations in 
microbial community have been linked to the invasive-
ness of non-native species [43–46]. Invasive species alter 
soil organic carbon (SOC) and soil nutrients [47] and 
are linked to increased SOC pools, especially in nutri-
ent-deficient areas [48], which is exacerbated by climate 
change [49].

Photosynthetic pigments, responsible for light absorp-
tion and processing, directly impact the photosynthetic 
capacity of a plant. Increase in temperature, water stress, 
and light intensity cause chlorophyll depletion by imped-
ing chlorophyll synthesis and accelerating the breakdown 
of chloroplasts [50]. The current study demonstrates that 
when elevation increases, the overall levels of chlorophyll 
and carotenoid increase, compensating for the decrease 
in photosynthetic efficiency. Carotenoids provide protec-
tion to chloroplasts against photodamage [51]. At higher 
elevations, UV-B exposure leads to the bleaching of chlo-
rophyll and a decrease in photosynthesis [51]. Decreased 
temperature, lowered partial pressures of  O2 and  CO2, 
and increased diurnal temperature fluctuations all inhibit 
chlorophyll production [52]. The current investigation 
found an increase in photosynthetic pigments at inter-
mediate altitude and a decrease at high altitude, consist-
ent with the observations made by Wingler et al. [53] and 

Khan et  al. [54]. Higher levels of total chlorophyll and 
carotenoids may offset diminishing photosynthetic effi-
ciency of plants due to harsh environmental conditions 
and shorter growing seasons at higher elevations [55].

Bioclimatic and topographic factors such as precipita-
tion seasonality, elevation, annual mean temperature, 
and land cover affect niche expansion [56]. Changes in 
climatic conditions have a significant impact on mor-
phological and phenological traits that are highly sensi-
tive to climate change [37]. These changes may be linked 
to genetic or phenotypic variations that aid in tracking 
climatic variations associated with elevation [57]. Leaf 
nutrient content in plants varies with morphological 
traits and growth patterns such as plant height, growth 
rate, leaf thickness, timing of bud formation, and senes-
cence [37]. An elevation-dependent increase in leaf 
nutrients (N and P) was reported in the current study. 
These results corroborate those of Fisher et al. [58], who 
reported an increase in leaf N and P up to 1,500 m alti-
tude in the Peruvian Andes. The correlation between leaf 
nutrient content and elevation can be either positive, 
negative, or neutral [59, 60]. In order to increase their 
metabolic activities, plants from colder regions typically 
have higher levels of N and P as an adaptive response 
to a cold environment [61]. The leaf N and P concentra-
tions are temperature-sensitive and have the ability to 
counterbalance fluctuations in external temperature [61]. 
The amount of N and P in leaves is influenced by both 
the ability of the plant to absorb these nutrients and the 
bioavailability of N and P in the soil [62, 63]. Guo et al. 
[16] found a negative correlation between water content 
and leaf biomass, which supports the findings of the cur-
rent study that water content decreases with elevation. 
The high water content of leaves is another indication of 
adaptation to support cell expansion for metabolic pro-
cesses such as net photosynthesis and transpiration [64].

A stronger association between leaf traits along an 
elevational gradient demonstrates the extent to which 
leaf traits influence the response of plants to environ-
mental change. The current study identified signifi-
cant correlations between leaf area to leaf dry weight 
ratio (LA ~ LDW) and leaf water content to leaf dry 
weight ratio (LWC ~ LDW) along an elevational gra-
dient. Based on the variations in the scaling relation-
ships between dry weight and leaf area, slope values 
(α = 0.76–1.07) are not constant [65–67]. According to 
Tomlinson et al. [68], leaves are subjected to many envi-
ronmental constraints over elevation gradients, includ-
ing fluctuations in temperature, light intensity, nutrient 
availability, and water availability. Except for the eleva-
tion of 1,100 m, the leaf area in the current study exhib-
ited a slower rate of growth compared to the leaf dry 
weight (mechanical tissue; α = 1). This result indicated 
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that leaves allocate greater resources towards light-
intercepting tissues as opposed to mechanical support 
tissues in order to optimise net carbon acquisition at 
higher elevations. The studies by Niklas et al. [66] and 
Milla and Reich [69] provide evidence in support of 
these claims. The variance in the relationship between 
leaf water content and leaf dry weight ranged from 0.89 
to 1.15, except for the elevation of 700 m (α ≥ 1). In the 
current study, an increase in leaf dry weight was associ-
ated with a correspondingly rapid increase in leaf water 
content. This result contrasted with that of Niklas et al. 
[66], who found that several plant categories had values 
of α < 1. With increasing elevation, there was a slight 
augmentation in both leaf water content and leaf dry 
mass, leading to a moderate increase in leaf thickness. 
The rapid increase in leaf water content relative to dry 
weight indicates the importance of water for leaf adap-
tation to low temperatures and intense solar radiation 
at higher elevations.

Conclusions
To summarise, our research indicates that P. hystero-
phorus has the ability to expand its range to higher 
altitudes by adapting its leaf functional features and 
resource-use strategies, thus broadening its functional 
niche. In mountainous regions, the upward migration 
and proliferation of invasive species depend on their 
ability to alter functional traits to adjust to the exist-
ing conditions. In order to adapt to higher elevations, 
P. hysterophorus developed smaller, denser leaves with 
increased SLA and leaf nutrient contents. An increase 
in photosynthetic pigment concentrations at higher 
altitudes counterbalanced the decline in photosynthetic 
efficiency. The findings suggest that differences in leaf 
traits and the correlations between different traits are 
important factors in maintaining the fitness and growth 
rate of plants under challenging conditions such as low 
temperatures, high irradiation, and limited resources 
at higher elevations. The ability of invasive plant spe-
cies to adapt to new environments displays their exten-
sive range expansion in contrasting habitats compared 
to their native regions. This study provides valuable 
insights into the phenotypic plasticity and invasive 
tendencies of other invasive species over different ele-
vational gradients and in response to varying environ-
mental conditions. Furthermore, it aids in the efficient 
identification and conservation of native species that 
are at high risk of extinction. This will facilitate specu-
lation regarding other invasive plant species, especially 
those that share phylogenetic or morpho-functional 
similarities with P. hysterophorus, in addition to aiding 
in the prediction of its future behaviour.
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