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species trap litter, increase soil quantity and nutrients, 
harbor microbial life for nutrient recycling, moderate 
temperature, store moisture, capture solar warmth, and 
act as wind shelters. Cushion plants are often considered 
nurse plants or facilitators of alpine habitats, providing a 
save rooting substrate for non-cushion species [3, 4].

Cushion-forming life is one of the most widespread 
evolutionary convergences, emerging at least 115 times 
in numerous clades of Angiosperms [2]. Fabaceae is 
one of the 62 families that contain the largest number 
of cushion-forming species belonging to several genera, 
such as Astragalus L., Onobrychis Mill. Anarthrophyllum 
Benth, and Lupinus L [1]..

Introduction
Cushion plants are generally compact, long-lived, low-
growing, dome-shaped or mat-forming organisms. They 
can be found in very cold, very dry, or cold and dry habi-
tats, and sometimes in warm and dry habitats world-
wide [1–3]. Because of their often-domed shape, cushion 
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discordance between both nuclear and plastid topologies regarding the position of some O. cornuta individuals. 
The underlying causes of this inconsistency remain unclear. However, we speculate that chloroplast capture, 
incomplete lineage sorting, and introgression were the main reasons for this event. Furthermore, molecular 
dating analysis indicated that O. cornuta originated in the early Pliocene (around 4.8 Mya) and started to diversify 
throughout the Pliocene and in particular the Pleistocene. Moreover, O. elymaitica was reduced to a subspecific 
rank within the species.

Keywords  Onobrychis cornuta, O. Elymaitica, Haplotype diversity, Irano-Turanian, Legume

Evolutionary history of an Irano-Turanian 
cushion-forming legume (Onobrychis cornuta)
Zahra Tayebi1, Mahtab Moghaddam1, Mohammad Mahmoodi2 and Shahrokh Kazempour-Osaloo1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-024-04895-y&domain=pdf&date_stamp=2024-3-19


Page 2 of 13Tayebi et al. BMC Plant Biology          (2024) 24:204 

Onobrychis has 205 accepted species [5], seven of 
which have a cushion life form [6]. Horned sainfoin is the 
most widespread cushion-forming species of the genus, 
distributed from West and Central Asia to Caucasus and 
N. Pakistan [5]. The nomenclatural history of the species 
was reviewed by Turland (1996) [7], who proposed that H. 
cornutum L., should be conserved against H. spinosum L., 
in which case the correct name and author citation would 
become Onobrychis cornuta (L.) Desv. [8], as already uni-
versally adopted [e.g., 6, 9, 10]. This taxon was established 
based on a single material collected by D. Gérard, from 
“the Oriente”- the unknown locality in the Middle East 
and Minor Asia- (Gérard 18 in Herb. Linn. No. 921.71; 
https://linnean-online.org/8094/#?s=0&cv=0). Onobry-
chis cornuta was classified as a member of O. sect. Den-
drobrychis DC. [11], which was followed by subsequent 
treatments [6, 9, 12–14]. Based on recent molecular phy-
logenetic studies, its sectional position (as the type spe-
cies of the section) was no longer tenable, and thus, along 
with its closest species, O. elymaitica Boiss. & Hausskn. 
transferred to O. sect. Onobrychis [15, 16]. Onobrychis 
cornuta has two accepted subspecies: subsp. cornuta 
and subsp. leptacantha Rech.f. They do differ in having 
strong spines vs. delicate spines, leaflet width > 1 mm vs. 
0.5 mm, and fruit length of 6–12 mm vs. ± 5 mm, respec-
tively [6, 17].

It is a densely twiggy, spiny shrub with a cushion-like 
habit up to 30 cm or more height and greater width with 
persistent spine-tipped peduncles and lax racemes of 3–6 

flowers. This species is morphologically polymorphic 
in terms of the shape and size of the leaflets, density of 
the indumentum, and corolla size (Fig. 1a-f ) [12, 6, pers. 
observ.].

This species, along with other congeneric species, has 
been studied from various perspectives, including gross 
morphology [e.g., 9, 6], karyology [18–21], fruit morphol-
ogy [22], palynology [23, 24], genetic diversity [25], and 
molecular phylogeny [15, 16, 26]. Moreover, the species 
has been solely subject of the other research areas, such 
as community ecology [27], ecological niche modeling 
[28] and mountainous rangeland management [29, 30].

Onobrychis cornuta is an element of the Irano-Turanian 
(hereafter, IT) region, dominant in rocky mountain sum-
mits and dry rocky subalpine between 1200 and 3500 m. 
in elevation [12, 14]. This species is distributed across 
the mountainous region of Iran [6]. The IT region is one 
of the hotspots of biological diversity in the Old World 
and harbors cushion-like and dwarf-shrubby taxa [31, 
32]. Several molecular phylogeny and phylogeographical 
studies have been conducted on cushion forming genera 
(e.g., Dionysia [33] particularly thorny genera from the 
IT region (e.g., Acanthophyllum [34, 35], Acantholimon 
[36–38] and Astragalus [39–41])).

Hitherto, no current comprehensive molecular phy-
logeny and phylogeographical studies of O. cornuta have 
been conducted. We used molecular markers (nrDNA 
ITS and two plastid intergenic regions: rpl32-trnL (UAG) 
and trnT(UGU)-trnL(UAA)) to address the following 

Fig. 1  Representative of the Onobrychis cornuta species complex. (a) a community of the species, (b) an individual plant of the species in flowering stage, 
(c) a close up of flower, (d) an individual plant of the species in the fruiting stage, (e) a close up of leaves of O. cornuta with linear-lanceolate leaflets, (f) 
a view of the type material of O. cornuta subsp. leptacantha (https://www.jacq.org/detail.php?ID=478542) and (g) a view of herbarium specimen of O. 
elymaitica (photos by Z. Tayebi)
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questions: (1) Does O. cornuta form a monophyletic 
group? (2) Are there distinct evolutionary lineages within 
this species? (3) Do phylogeographic patterns exist in the 
species?

Results
Phylogenetic analyses
The alignment of nrDNA ITS sequence for 80 accessions 
has 659 nucleotide sites, of which 70 were potentially 
parsimony informative (excluding outgroups).The aligned 
data matrices of rpl32-trnL(UAG) and trnT(UGU)-trnL(UAA) 
intergenic spacers for 68 and 57 accessions were 1014 
and 1223 nucleotides long, respectively.

The number of parsimony informative sites was 29 
and 39 for the first and second plastid regions, respec-
tively, and the concatenated chloroplast dataset for 62 
accessions had 2188 nucleotide sites, of which 118 were 
parsimony informative. Furthermore, the combined 
nuclear + plastid dataset for 49 accessions contained 2855 
nucleotide sites, of which 147 were parsimony informa-
tive sites. Detailed descriptive statistics for the individual 

dataset (nrDNA ITS and plastid data) and the concate-
nated dataset are given in Table S2. Maximum likelihood 
(ML) and Bayesian inference (BI) analyses of the aligned 
data matrices (nrDNA ITS, cpDNA and nr + cp) yielded 
trees with the same topology. Thus, we used the Bayesian 
50% majority-rule consensus tree topology and showed 
both posterior probabilities and bootstrap values on the 
branches. In the nrDNA ITS tree (Fig.  2a), two acces-
sions from N Iran and one from Turkey formed the basal 
branches of O. cornuta, followed by a large assemblage of 
the remaining accessions. In this assemblage, O. cornuta 
subsp. leptacantha along with several accessions (form 
NE Iran and NW Iran) formed a sister group to several 
populations (including two accessions of O. elymaitica) 
from Central Alborz, NW Iran, and Zagros Mountains. 
In the plastid combined tree (Fig.  2b), two representa-
tives of O. cornuta, including one individual from Tur-
key and O. cornuta subsp. leptacantha, are sisters to 
an assemblage of populations of the species (including 
O. elymaitica). Within this large clade, two accessions 
(no. 67 & 68), which belonged to the Central Alborz 

Fig. 2  The 50% majority-rule consensus trees inferred from Bayesian analysis using (a) nrDNA ITS and (b) plastid combined dataset (rpl32-trnL(UAG) and 
trnT(UGU)-trnL(UAA)) regions. Numbers above branches are the posterior probability (PP) of BI and bootstrap percentage (BP) of ML analysis, respectively. The 
accessions with dashed line are in conflict between trees a and b. The asterisk (*) represents accessions with an inversion of 8 bp in rpl32-trnL(UAG) dataset
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Mountain population in the nrDNA ITS tree, were well 
nested within a population from NW Iran in the plastid 
tree (Fig. 2).

Analyses of the combined nr + cp. data demonstrated 
that O. cornuta consisted of four subclades. The first 
diverging subclade (“I”) comprised two individuals, one 
from Northern Iran (Javaherdeh) and another one from 
Turkey. O. cornuta subsp. leptacantha formed the sec-
ond subclade (II), being sister to subclades “III” and “IV”. 
The subclade “III” comprised 19 accessions ranging from 
Central and Eastern Alborz to Northeastern Iran. The 
subclade “IV” is composed of 24 accessions (including O. 
elymaitica) ranging from Southeastern, through Zagros 
Mountains to Northwestern Iran (Fig. 3).

Network analyses
Of the 77 accessions of O. cornuta, 25 ITS haplotypes 
(ribotypes) were detected with a frequency ranging 
from one to 14 individuals. Nucleotide sequences of the 

concatenated cpDNA were obtained for 59 accessions, 
revealing a total of 42 distinct haplotypes. These hap-
lotypes represent remarkable genetic diversity within 
the species, particularly with varying frequencies rang-
ing from a single to multiple individuals. Figures  4 and 
5 show an unrooted haplotype network using statistical 
parsimony for both datasets. The basic statistics of haplo-
types of each DNA regions are presented in Table 1. The 
nuclear and plastid data set displayed both negative val-
ues for Tajima’s D and Fu and Li’s F*, implying that the 
populations experienced no bottleneck.

Divergence time estimation
Results from the BEAST analysis of the nrDNA ITS data-
set presented in Fig. 6 revealed that the effective sample 
size (ESS) of all parameters greater than 500.

Our analysis indicated that the stem-node (Greuteria
/Eversmannia/Corethrodendron + Onobrychis) was esti-
mated to be the Early Miocene (∼ 17.4 Mya). In addition, 

Fig. 3  50% majority rule consensus tree from Bayesian analysis of the combined nrDNA ITS, rpl32-trnL(UAG), and trnT(UGU)-trnL(UAA) dataset. Numbers above 
branches are the posterior probability (PP) of BI and bootstrap percentage (BP) of ML analyses, respectively. Sample number and locality name for the 
accessions of Onobrychis cornuta were given beside its name
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Fig. 4  (a) Distribution of the nrDNA ITS-ribotype of O. cornuta, (b) nrDNA ITS ribotype network based on statistical parsimony. Circle size is proportional 
to the number of accessions in the ribotype. The map layout is prepared in the Arc GIS software environment (https://www.arcgis.com)

 

https://www.arcgis.com


Page 6 of 13Tayebi et al. BMC Plant Biology          (2024) 24:204 

Fig. 5  (a) Distribution of the cpDNA haplotype of O. cornuta, (b) cpDNA haplotype network based on statistical parsimony. Circle size is proportional to 
the number of accessions in the haplotype. The map layout is prepared in the Arc GIS software environment (https://www.arcgis.com)

 

https://www.arcgis.com
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the most recent common ancestor (MRCA) of Onobry-
chis, which is divided into two major clades (I and II), 
dated to the Middle Miocene (∼ 13.7 Mya). Clade I com-
prises representative species of O. subgen. Sisyrosema 
dated to the Late Miocene (∼ 6.4 Mya), and clade II is 
composed of representative species of O. subgen. Ono-
brychis with special reference to O. cornuta populations 
diverged by the Middle Miocene (∼ 11.2 Mya). Our dat-
ing analysis indicated that O. cornuta originated (∼ 4.8 
Mya) during the early Pliocene and diversified through-
out the Pliocene and Pleistocene.

Discussion
Taxonomic status and phylogenetic relationship within O. 
cornuta
Onobrychis cornuta exhibits significant morphological 
character polymorphism among other Onobrychis spe-
cies across its distribution range [12, 6, pers. observ.].

Based on our concatenated dataset (nr + cp), different 
individuals of O. cornuta formed four lineages. (Fig.  3). 
With the exception of lineage ”I”, other three ones dem-
onstrate geographical differentiation. Lineage I which 
comprised accessions from N Iran and Turkey, well 
diverged from the rest of O. cornuta, (at least materials 
from Turkey) and was morphologically distinct (having 
five - nine leaflet pairs and villose indumentum) from 
others. O. cornuta subsp. leptacantha, as lineage II, is 
distinguished by some features including leaflets width of 
0.5 mm, delicate spiny peduncles and tiny fruits (5 mm) 
and restricted to Afghanistan and Pakistan [6, 17]. The 
lineage “III” includes individuals restricted to Central & 
Eastern Alborz and NE Iran, which is distinct in possess-
ing oblong-elliptic leaflets with 4–6  mm long as well as 
shorter standard (10–12 mm. Finally, lineage “IV” mainly 
comprising specimens with linear-lanceolate leaflets of 
10–25 mm longer standard (13–19 mm) and confined to 
Zagros Mountain, NW to SE Iran.

O. elymaitica is well nested within this lineage and dis-
tinct from O. cornuta in having some autapomorphic fea-
tures including longer internodes, calyx teeth longer than 
calyx tube and multiflowered racemes (6–10 flowers) and 
limited distribution range in SW Iran (Fig. 1g) [6]. More-
over, the specific rank of this taxon is no longer tenable 
and herein reduces to the subspecies rank. Given that, we 
provisionally propose a diagnostic key to the infra-spe-
cific of O. cornuta (see Taxonomic treatment). However, 
to determine the exact taxonomic status of these taxa, 
additional studies are needed in the future.

Haplotype network
Analysis of nuclear data revealed the existence of 25 dis-
tinct ribotypes among 77 individuals, indicating a sub-
stantial level of ribotype diversity within O. cornuta. The 
ribotype network structure showed that two ribotypes 

from Turkey and northern Iran (R1 and R2) were geneti-
cally distant from the remaining ones, with 11 and 12 
mutations, respectively, which also formed the early 
diverged lineages in the nrDNA ITS tree (Fig.  2a). Sur-
prisingly, R1 (corresponding to H1), in contrast to R2 
(H2), also had the highest number of mutations in both 
the plastid tree and haplotype network (seven mutations), 
indicating that this might be an ancient haplotype/lineage 
within O. cornuta (Figs.  4b and 5b). Ribotype R13  was 
located at the center of the haplotype network (as an 
internal ribotype), whereas the other ribotypes were radi-
ally arranged, with distances of 1–3 mutations (Fig. 4b). 
Because the distances between ribotype R13 and most of 
the other derivative haplotypes were not large, these hap-
lotypes probably diversified rather recently.

The internal ribotype (R13) is associated with individu-
als displaying linear-lanceolate leaflets of up to 25 mm in 
length, which in some haplotypes have changed to ovate 
leaflets. Interestingly, there have been instances where 
ovate leaflets have reversed the linear characteristics 
observed in the ancestral state. For instance, R13, with 
linear-lanceolate leaflets, has evolved into R17 which 
possesses ovate leaflets and subsequently undergone a 
reversal in R22 and R23.

Despite these differentiations, some derived haplotypes 
(R14, R12, R9, R8, and R3) retained ancestral linear-lan-
ceolate leaflets within the taxon. The haplotype network 
analysis of nrDNA effectively demonstrated geographic 
differentiation within the species. The segregation of hap-
lotypes in the network was almost similar to their posi-
tion in the nrDNA ITS phylogenetic tree (Fig. 2a).

Haplotype network analysis of chloroplast data, com-
prising 59 accessions and 42 distinct haplotypes, revealed 
that the majority of haplotypes had a single individual. 
H39 and H17 exhibited internal haplotypes, repre-
sented by five and six individuals, respectively. Among 
all the plastid haplotypes, the H30 haplotype, restricted 
to NW Iran, experienced more genetic diversity than 
other haplotypes. The chloroplast haplotypes, similar to 
the nuclear haplotypes, demonstrate almost the same 
geographic differentiation. The haplotype networks and 
phylogenetic trees do not provide evidence for the rec-
ognition of O. elymaitica (R21, H21) as a distinct species 
from O. cornuta, although it is somewhat morphologi-
cally different.

Table 1  Summary of genetic diversity indices and results of 
neutrality tests (Tajima’s D and Fu and Li’s Fs) for nuclear and 
chloroplast data. H, number of haplotypes; Hd, haplotype 
diversity; π, nucleotide diversity

H Hd π D Fs
ITS 25 0.9421 0.01361 -2.02881 -5.872
cpDNA 42 0.9795 0.01 -1.87955 -15.403
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Our findings revealed that the O. cornuta complex has 
greater genetic diversity than its consectional (O. sect. 
Onobrychis sensu Amirahmadi et al. 2016 [15]) species 
such as O. viciifolia [42, 43] and O. transsilvanica/O. 
montana [44]. In the present study, the most remarkable 

feature of O. cornuta complex has unexpectedly high 
haplotype and nucleotide diversities in both nrDNA and 
cpDNA dataset (Table  1). However, these indices have 
been found to be low in some other species (e.g. Oxytro-
pis chakaensis [45], Iberis simplex [46]). The occurrence 

Fig. 6  Chronogram inferred from BEAST anaylsis of nrDNA ITS. Each node represents the mean divergence time estimate and blue bars represent the 
95% highest posterior density intervals around mean nodal ages. Sample number and locality name for the accessions of Onobrychis cornuta were given 
beside its name
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of high haplotype and nucleotide diversity within O. 
cornuta accessions could be explained by its life form 
(woody spiny shrub), breeding system (outcrossing) as 
well as the widespread geographical distribution [47, 48].

Divergence time
The utilization of BEAST analysis has provided valuable 
insights into the origin and subsequent diversification of 
Onobrychis in the context of the climatic conditions dur-
ing the Middle Miocene through the Pleistocene, which 
is consistent with the time estimation of previous stud-
ies [16, 49] (Fig.  6). As mentioned above, O. cornuta is 
one of the most important components of Irano-Tura-
nian region. The IT region, as one of the largest floris-
tic regions in the world [31, 32], underwent cooling and 
aridification around the Middle Miocene, which were the 
results of the tectonic events (e.g. uplift of the mountains 
ranges (Alborz, Caucasus, Kopet Dagh, Pamir, Taurus, 
Tian Shan and Zagros) and plateau regions (Anatolian, 
Iranian and Qinghai-Tibetan)) [50–52, 32].

O. cornuta, as a cushion-forming element of subalpine/
alpine region, originated around 4.8 Mya in early Plio-
cene and started to diversify throughout Pliocene and in 
particular Pleistocene (Fig.  6). The diversification of the 
O. cornuta assemblage can be explained by Pleistocene 
glaciation and geologic events. Pleistocene climatic oscil-
lations (glacial-interglacial episodes) actively promoted 
diversification. In glacial periods, the level of habitat con-
nectivity was increased, thereby affecting gene exchange 
between isolated populations and prompting allopatric 
speciation, while in interglacial periods, the isolation 
between alpine habitats was enhanced due to the devel-
opment of climax vegetation in temperate zones [53]. On 
the other hand, alpine plant radiation, which is consid-
ered recent and rapid, occurred in all the main mountain 
ranges of the world in the Pliocene and Pleistocene [54–
56]. The genetic differentiation that leads to the emer-
gence of new species/populations conforming to specific 
environmental conditions is facilitated during Pleisto-
cene fluctuations [57, 58]. Notable examples of rapid 
radiation in this era have been well-ducumented in some 
cushion-forming taxa (e.g. Acantholimon [38]; Acantho-
phyllum [34, 35] and thorny cushion Astragalus [59]).

Cytonuclear discordance
Different natural factors (such as hybridization, intro-
gression, chloroplast capture, and incomplete lineage 
sorting) have been proposed to explain the discordance 
between nuclear and organellar phylogenies [60]. One 
of the most likely reasons for the inconsistency between 
paternal and chloroplast DNA-based phylogenetic trees 
is the chloroplast capture. Chloroplast capture, which 
is the introgression of chloroplast from one species 

(population) into another, occurs when cytoplasmic sub-
stitution has an advantage in seed production [61–64].

Phylogenetic trees and haplotype networks based on 
nrDNA ITS and cpDNA data are topologically incongru-
ent regarding the position of some individuals: (I) Two 
individuals from Central Alborz (67–68 with ribotype 
R24) do share the same plastid haplotype (H39) with a 
population from NW Iran. H39 is an internal and rela-
tively old haplotype, and thus, incomplete lineage sort-
ing may be a more plausible explanation for two distant 
populations sharing the same cp. haplotype [65, 66]. 
Furthermore, haplotype H39 and its derived haplotypes 
(H37-38 and H40-H42) are distinguished by an inversion 
of 8 bp in the rpl32-trnL(UAG) region (Fig. 2b). These two 
individuals are morphologically (having ovate leaflets) 
more similar to the paternal population (ribotype R24) 
than to the maternal population. It is supposed that the 
pods of an ancestral maternal population due to high 
viability were dispersed via biological agents, such as 
birds and herbivorous mammals, toward Central Alborz 
and established therein in the past [67]. (II) Another case 
of discordance between nrDNA ITS and cpDNA was 
detected for ribotypes R4-R7 restricted to NE Iran. The 
ribotypes in both nrDNA ITS phylogeny and network 
(Figs.  2a and 4a) formed a distinct lineage, while in the 
cpDNA tree and network was nested along with Central 
Alborz population H17 and H22. Members of this group 
are geographically close to each other, and a possible 
hypothesis for explaining the cytonuclear discordance 
can be either introgression or incomplete lineage sort-
ing (ILS). However, it was difficult to distinguish between 
these events in our case. Generally, recent divergence, 
large population size, and shallow bifurcation patterns 
are factors that indicate the occurrence of ILS as the 
reason for the inconsistency between gene trees [66]. In 
contrast, the populations of NE Iran and Central Alborz 
have almost sympatric distribution; in this case, incom-
patibility cannot be attributed to the ILS. NE haplotypes 
(H5, H9, H11, H12, H14, H20) may have captured their 
chloroplasts through introgression from the Central and 
Eastern Alborz haplotypes (H17 and H22, Fig. 5) (see also 
the next section).

III) The last is a local hybridization event that we 
found in an individual (no. 73) restricted to the eastern 
central Alborz, Shahmirzad, Semnan province). In the 
nrDNA ITS, four unambiguous polymorphic sites (A/C, 
C/T, T/C, G/T) were detected, which are the product of 
hybridization between ribotype R24 as a paternal plant 
and ribotype R25 (corresponding to plastid H8) as mater-
nal one, both growing in the same region. This hybrid 
may have recently evolved because nrDNA ITS has not 
yet undergone concerted evolution.
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Taxonomic treatment
Onobrychis cornuta (L.) Desv., J. Bot. Agric. 3:81 (1814) 
sensu Tayebi.

Type: Habitat in Oriente, Gérard 18 in Herb. Linn. No. 
921.71 (https://linnean-online.org/8094/#?s=0&cv=0).

= Hedysarum cornutum L., Sp. Pl., ed. 2.: 1060 (1763).
= Hedysarum spinosum L., Syst. Nat., ed. 10: 1171. 

nom. rej. prop.
= Dendrobrychis cornuta (L.) Galushko, Novosti Sist. 

Vyssh. Rast. 13: 251 (1976).
O. cornuta subsp. leptacantha.
Type: Afghanistan, prov. Jaji, inter Dre Kalla et Qasim 

Khel, 11 July 1965, Rechinger 32,331 (W; designated by 
Negaresh et al. 2022).

O. cornuta subsp. elymaitica (Boiss. & Hausskn.) 
Tayebi & Kaz. Osaloo, com. nov.

Type: Iran: Kuh-i Nur ad Tang Nalli, 2100–2400  m, 
Hausskneckt s.n. (W).

Syn: O. elymaitica Boiss. & Hausskn.

Key to the subspecies of O. cornuta
1a. Plant with long internodes, leaflets linear-lanceolate, 
spiny peduncles delicate, calyx 6–7  mm, teeth longer 
than tube, (SW Iran) O. cornuta subsp. elymaitica.

1b. Plant with short internodes, leaflets variable, spiny 
peduncles stout or delicate, calyx 3.5-5 mm, teeth shorter 
than tube 2.

2a., Leaflet linear-lanceolate, 5–8 × 0.5  mm, spiny 
peduncles delicate, calyx c. 4 mm long (Afghanistan and 
Pakistan) O. cornuta subsp. leptacantha.

2b. Leaflet elliptic-oblong or linear-lanceolate 
7–25 × 1–3  mm, spiny peduncles stout, calyx 4.5–6  mm 
long (across the species range) O. cornuta subsp cornuta.

Conclusions
This is the first study on the phylogeny and distribu-
tion patterns of O. cornuta nuclear ribotypes and plastid 
haplotypes across a large part of the IT floristic region. 
The present study revealed high genetic diversity among 
accessions of this species in both the nuclear and plastid 
regions. The species is phylogenetically composed of four 
lineages and is not monophyletic due to the inclusion of 
O. elymaitica as its morphologically closest relative. Our 
findings indicate that O. cornuta originated in the early 
Pliocene (4.8 Mya) and diversified across the Pliocene 
and Pleistocene. The species has undergone cytonuclear 
discordance in some distantly and closely related enti-
ties, which might be caused by ILS or chloroplast capture 
and subsequent introgression events. Finally, the data 
obtained from this study could be a framework for fur-
ther research on the phylogeography/genetic structure of 
the species across its distribution range.

Materials and methods
Sampling and DNA sequencing
In the present study, 77 accessions of O. cornuta and 
O. elymaitica were selected for molecular studies, of 
which 35 were collected by us from different habitats in 
various localities almost throughout Iran between 2020 
and 2022. The specimens were deposited in the Tarbiat 
Modares University Herbarium (TMUH). The leaves 
of 42 remaining samples were obtained from various 
herbaria: Ferdowsi University of Mashhad Herbarium 
(FUMH), Gazi University Herbarium (GAZI), Herbarium 
of Isfahan Agricultural and Natural Resources Research 
and Education Center (SFAHAN), Museum of Natural 
History Vienna (W), Herbarium of Research Institute of 
Forests and Rangelands (TARI), Tehran University Her-
barium (TUH), Herbarium of University of Isfahan (HUI) 
and West Azerbaijan Natural Resources Research Center 
Herbarium (WANRCH) (Table S1). The materials were 
identified by Sh. Kazempour-Osaloo and Z. Tayebi.

Total genomic DNA was extracted from dried leaf 
materials using the Doyle and Doyle CTAB method [68] 
with slight modifications. The nrDNA ITS region (ITS1-
5.8 S-ITS2) was amplified by using AB101 and AB102 as 
the forward and reverse primers, respectively [69]. Also, 
two cpDNA intergenic spacers, including rpl32-trnL(UAG) 
(using primers rpl32-F and trnL(UAG) [70]) and 
trnT(UGU)-trnL(UAA) (using primer pair trna and trnb of 
Taberlet et al. [71] as well as using the newly designed 
forward primer in this study: trnT-F (5′-​A​T​C​A​A​T​T​G​T​G​
T​G​T​G​C​A​T​G​C​A​T-3′) were used in this study.

PCR amplification was performed for all regions within 
a microtube containing 8  µl deionized water, 10  µl of 2 
× Taq DNA polymerase master mix Red (Amplicon), 
0.5 µl of each primer (10 pmol/µl), and 1 µl of template 
DNAFor nrDNA ITS region, the PCR program was 4 min 
at 94˚C for predenaturation followed by 33 cycles of 
1 min at 94˚C for denaturation, 1 min at 55˚C for primer 
annealing and 1  min at 72˚C for primer extension, fol-
lowed by a final primer extension of 7 min at 72˚C. PCR 
procedures for cpDNA regions were 4  min at 94˚C for 
predenaturation followed by 35 cycles of 1  min at 94˚C 
for denaturation, 1  min and 20  s at 55˚C for primer 
annealing and 1–2 min at 72˚C for primer extension, fol-
lowed by a final primer extension of 7 min at 72˚C. PCR 
products were separated by electrophoresis in 1% agarose 
gels in 1 × TBE buffer (pH = 8) stained with ethidium bro-
mide. PCR products using the appropriate primers were 
sent for Sanger sequencing to Pishgam Inc.

Phylogenetic analyses
The best nucleotide substitution model for each locus 
was estimated using jModelTest [72] implemented in the 
Phylemon 2.0 web-server [73] based on the Akaike infor-
mation criterion (AIC). Sequences were aligned using the 

https://linnean-online.org/8094/#?s=0&cv=0
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online version of MAFFT [74] and adjusted manually. We 
conducted Baysian analyses of the dataset using MrBayes 
ver.3.2 [75] as implemented in CIPRES Science Gateway 
[76] at https://www.phylo.org. The maximum likelihood 
analyses were performed using the online phylogenetic 
software W-IQ-TREE [77] available at http://iqtree.cibiv.
univie.ac.at. Onobrychis carduchorum C.C.Towns., Ono-
brychis shahpurensis Rech.f. and Onobrychis viciifolia 
Scop. were chosen as outgroups according to Hadadi et 
al. [16]

Genetic diversity and haplotype analyses
The determination of haplotype/ribotype diversity was 
carried out based onthe statistical parsimony using the 
TCS networking method implemented in the POPART 
(Population Analysis with Reticulate Trees) software pro-
gram [78]. For each dataset (nrDNA ITS and cpDNA), 
haplotype diversity (Hd) and nucleotide diversity (π) 
were estimated. To detect departures from the standard 
neutral model of evolution in the ITS and cpDNA com-
bined (rpl32-trnL(UAG) + trnT(UGU)-trnL(UAA)) dataset, we 
performed Tajima’s D [79] and Fu and Li’s Fs [80] tests 
using DnaSP v.6.12 [81]. To test for a correlation between 
geographic and genetic distances, we performed a Mantel 
test [82] using GenAlEx 6.5 software [83].

Estimation of divergence time
To estimate the divergence times of the Onobrychis clade, 
we used the powerful phylogenetic tool, BEAST ver. 
1.10.4 [84] on the CIPRES Science gateway. Because of 
the absence of reliable fossils of the genus and its rela-
tives in the IR-loss clade, our analyses were performed 
based on secondary calibration using age estimates from 
previous studies [49, 85, 86]. The clock was calibrated 
using the estimate of mean age 15.69 ± 3 Mya for a node, 
encompassing the genus Onobrychis [49, 86]. In this 
study, an uncorrelated relaxed clock model was selected. 
Analyses were performed for 10 × 106 generations with a 
burn-in of 10%. The Yule model was used as a tree prior. 
The convergence of parameters was checked visually and 
via effective sample sizes (to be at least 200) using Tracer 
1.7.2 [87].
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