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Abstract
Background Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory 
agents in medicinal plants. In vitro culture of plants can improve the medicinal plants’ metabolite profile and phenolic 
compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, 
among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous 
cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content 
of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were 
inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 
days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants 
were measured.

Results CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, 
including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also 
increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the 
plants treated with CL had the highest RA content (7.68 mg. g− 1 dry weight) compared to the control (3.42 mg. g− 1 
dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL.

Conclusions The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic 
pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of 
plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated 
with CL was reported for the first time in this investigation.
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Background
Peppermint (Mentha piperita L.) is a perennial plant 
belonging to the family Labiatae. This hybrid, a cross 
between Mentha spicata L. and Mentha aquatica L., 
is considered native to temperate regions of the world, 
especially Europe, North America, and North Africa 
[1]. M. piperita has antibacterial, antiviral, antioxidant, 
antispasmodic, anti-bloating, and anti-asthma proper-
ties [2, 3]. Due to these properties, peppermint is com-
monly used in the food, perfumery, health, and cosmetic 
manufacturing industries [4]. This plant contains various 
medicinal metabolites, such as menthol, menthone, men-
thofuran, and phenolic compounds including rosmarinic 
acid (RA) [1, 5]. The synthesis of RA is known to be one 
of the major defense mechanisms of plants against free 
radical damage [6, 7]. Its tannin-like properties also pro-
tect the plant against pathogens and herbivores [8].

The presence of RA has been reported in several higher 
plant families such as Lamiaceae, Apiaceae, Boragina-
ceae, as well as some ferns and hornworts [9, 10]. This 
compound, forms when caffeic acid and 3,4-dihydroxy-
phenylacetic acid combine in an ester bond, exhibits anti-
oxidant, antimicrobial, antiviral, and anti-inflammatory 
activities [11, 12]. Moreover, it has anti-mutagenic ability, 
as well as cardioprotective, hepatoprotective, and photo-
protective activity [8].

Given that medicinal metabolites are present in small 
amounts in plants and their extraction is time-consum-
ing and expensive process, strategies that enhance these 
metabolites in medicinal plants are of great importance. 
In recent years, approaches such as plant tissue culture 
and gene editing have been developed to increase the 
amount of medicinal metabolites [13, 14]. In addition 
to increasing the amount, mentioned methods can also 
improve the quality of these valuable metabolites. The 
expansion of these methods is important, especially in 
areas where, due to the climate conditions, the cultiva-
tion and production of medicinal plants is difficult.

In recent years, plant cell and tissue culture methods 
have been suggested to boost the accumulation of pheno-
lic compounds in medicinal plants [13, 15–17]. Further-
more, the in vitro culture of medicinal plants is useful for 
obtaining unified plant biomass on a large scale with a 
guaranteed aroma and metabolite quality [3]. According 
to Abdel Rahman et al., plant tissue culture is an effective 
technique for producing RA in Ocimum basilicum L. and 
Melissa officinalis L., and they observed an enhancement 
in its content in undifferentiated cell cultures [18]. Other 
studies have confirmed similar results in sweet basil (Oci-
mum basilicum L.) tissue culture [19]. Moreover, previ-
ous investigations have reported the optimization of RA 
production by callus culture of medicinal plants, such as 
Salvia nemorosa L. and Satureja hortensis L. [20, 21]. 

Based on the recent studies, various elicitors have 
shown improved production of phenolic compounds in 
various economic and medicinal plants [15]. Elicitors are 
the key factors that induce plant defensive responses fol-
lowed by an increase in targeted secondary metabolites 
[22]. For example, the use of bioelicitors such as yeast, 
mycorrhizae, cyanobacteria, and algae to increase phe-
nolic compounds in economic plants has been reported 
[23–27]. The increase in RA content in medicinal plants 
as a result of abiotic elicitor application has also been 
reported [22, 25].

Cyanobacteria are the simplest group of photosynthetic 
organisms with a great capacity to stimulate plant growth 
[28–30] by producing plant growth regulators, improv-
ing plant mineral nutrition, and fixation of atmospheric 
nitrogen (N2) which makes them efficient bioelicitors [29, 
31, 32]. In addition to inducing plant vegetative growth, 
cyanobacteria can optimize targeted secondary metabo-
lite production in medicinal plants. Several factors can 
affect secondary metabolite accumulation in the tissue 
culture of plants, including phytohormones and micro-
element levels [8]. Therefore, cyanobacteria can also 
optimize the production of valuable plant metabolites in 
different ways.

Despite the existence of numerous reports about the 
regulatory effect of elicitors on phenolic compounds 
of plants, cyanobacteria have received less attention as 
bioelicitors. Due to limited reports about the impact of 
cyanobacteria on the tissue culture of medicinal plants 
as bioelicitors, the current study aimed to evaluate the 
growth-promoting potential of the heterocystous cya-
nobacterium Nostoc spongiaeforme var. tenue ISB65 on 
Mentha piperita L. under tissue culture conditions. The 
effects of the inoculation were assessed based on various 
growth indices, photosynthetic pigment contents, and 
RA contents of plant biomass. In addition, the key factors 
affecting plant growth and metabolite quantity in cyano-
bacteria-treated plants were investigated.

Methods
Preparing cyanobacterial lysate (CL)
Following soil collection from Plantago major’s bed in 
Mazandaran Province, Iran, by Chookalaii et al. [26], iso-
lated and axenic cultures of the heterocystous cyanobac-
terium N. spongiaeforme var. tenue ISB65 were prepared 
after continuous subcultivation in agar plates of BG-110 
medium and incubation under 12  h artificial light/12  h 
dark cycles at 25 °C [33].

Identification of cyanobacterium was performed using 
a BH-2 light microscope (Olympus). Cyanobacteria 
paste prepared after harvesting the culture at the end of 
the exponential growth phase (four weeks after incuba-
tion). CL was prepared according to Nascimento et al.’s 
modified method [34]. The sample was frozen for 24 h at 
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-20 °C, then defrosted at room temperature (three times), 
followed by ultrasonication (FAPAN 300UPL, Iran) for 
10  min (20  s cycles with 40  s resting time). Then, the 
obtained lysate was centrifuged at 12,000 rpm for 10 min, 
and the supernatant was used as the CL. Finally, CL was 
sterilized through filtration by using a 0.2 μm filter before 
being added to the tissue culture media.

Shoot micropropagation
After obtaining M. piperita L. explants from ACECR 
(Iranian Institute of Medicinal Plants), samples were 
disinfected by soaking in 1% sodium hypochlorite for 
10 min, rinsing with sterilized distilled water, immersion 
in 70% ethanol for 1 min, and rinsing with sterilized dis-
tilled water for five times. Disinfected apical meristems 
were cultivated on solid Murashige and Skoog (MS) 
medium containing 7  g.L− 1 agar, 15  g.L− 1 sucrose, and 
2 gr. L− 1 activated charcoal. After four weeks, the apical 
meristems of in vitro cultivated plants were utilized for 
the experiment.

Thirty jars each containing 40 mL MS medium was pre-
pared for each control and CL treatment. In addition, 2 
gr. L− 1 CL was added to the pre-autoclaved CL treatment 
medium. Each jar was cultured with 8 apical meristems 
of M. piperita and randomly settled in a culture chamber 
under 12 h artificial light/12 h dark cycles at 25 °C.

Measurement of growth parameters
The in vitro cultivated plants were harvested after 50 
days of incubation for morphological, physiological, 
and metabolic evaluations. Quantitative indices related 
to the plants growth, including dry and fresh biomass, 
shoot and root length, leaf number and ramification were 
determined. Fresh weights were measured by weighing 
the root and shoot for each plant, separately. Root and 
shoot of each plant was oven dried at 38 °C for three days 
to measure dry weights. Further analysis such as pig-
ment content and extraction were performed using fresh 
leaves.

RA extraction and analysis
RA was extracted based on the procedure provided 
by Phatak and Heble [35]. In addition, HPLC analy-
sis was conducted on a Waters liquid chromatography 
apparatus consisting of a Waters separations module 
2695 (USA) and a Waters dual absorbance detector 996 
(USA). To load the samples, automatic injection was 
carried out using a 100 µL volume loop. Data were 
acquired and integrated by using Millennium 32 soft-
ware. A 25  cm×4.6  mm Eurospher 100-5 C18 column 
(25  cm×4.6  mm×5  μm) provided by KNAUER (Berlin, 
Germany) was utilized for the chromatographic assay. 
Furthermore, elution was performed in isocratic mode 
with acetonitrile as solvent A and water as solvent B at 

a flow rate of 1 mL.min− 1. The peaks were monitored by 
using a UV detector at 255 nm. It is worth noting that the 
injection volume was considered 20 µL, and the tempera-
ture was maintained at 25 °C.

Photosynthetic pigment content
For this purpose, 5 mg of plant leaves was powdered in 
liquid nitrogen and suspended in 20 mL of 80% acetone. 
Then, the suspension was centrifuged for 10  min, the 
supernatant of which was withdrawn following cen-
trifugation at 6000  rpm. After filtration, the absorbance 
of samples was measured at 470, 646, and 663 nm using 
Unico 2100 Vis Spectrophotometer. Finally, the carot-
enoid and chlorophyll contents were calculated according 
to Arnon [36].

Extraction and HPLC analysis of auxins
The auxin standards indole 3-acetic acid (IAA) and 
indole-3-butyric acid (IBA) were purchased from Duch-
efa Biochemie (Haarlem, Netherlands), and indole-3-pro-
pionic acid (IPA) was obtained from Merck Chemicals 
(Darmstadt, Germany). All solvents were of HPLC grade 
and were provided by Samchung Chemical Co. (Seoul, 
Korea). Ultrapure water used in all experiments was 
obtained from a Millipore Direct Q UV-3 system. The 
experimental procedures for extraction, identification, 
and quantification of endogenous auxins in the studied 
cyanobacterium were performed as described by Seyed 
Hashtroudi et al. [37]. The algal biomass, initially freeze-
dried in an Operon bench top freeze dryer (FDB-5503), 
was extracted by methanol-water 80:20 in an ultrasonic 
bath (Bandelin SONOREX DIGITEC DT 103  H, Ger-
many) for 30  min at 20  °C. The suspension was centri-
fuged at 6.728×g for 10  min, and then filtered through 
a 0.45-µm PTFE syringe filter, and the final volume was 
reduced to 500–1000 µL under a stream of N2. The stock 
standard solution of target auxins, IBA, IAA, and IPA 
was provided by dissolving 1  mg of auxins in 10  mL of 
methanol-water (80:20, v/v). The subsequent concentra-
tions required to plot the calibration curve were made by 
serial dilution of the initial standard. All standards and 
extracts were stored at 0–4 °C. Chromatographic analysis 
of auxins was conducted on an Agilent 1200 series HPLC 
system. Instrument control and processing were obtained 
by HPLC with ChemStation software.

A Eurosphere RP-column was applied for separa-
tion and measurement of auxins. The injection volume 
of samples was 20 µL. Three replications and three runs 
were applied for experiment. To calculate the recovery of 
the analytes, a certain amount of the standard was added 
to the cyanobacterial sample, and the extraction and 
quantification steps were performed exactly the same as 
those for the real samples. Finally, the auxins were quan-
tified by using the calibration curves created by plotting 
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the peak areas versus six concentrations of three intended 
auxins. Table 1 shows the amount of endogenous auxins 
(IAA, IBA, and IPA) in the extract of N. spongiaeforme 
var. tenue ISB65.

Evaluating the chemical content of cyanobacterium
To obtain the chemical composition of the cyanobacte-
rium, the amounts of total nitrogen (N), nitrite (NO2

−), 
nitrate (NO3

−), ammonium (NH4
+), sulfate (SO4

2−), 
phosphate (PO4

3−), carbonate (CO3
2−), magnesium 

(Mg2+), calcium (Ca2+), sodium (Na+), and potassium 
(K+) ions were determined at the Institute of Arian 
Fan Azma, Iran, following the methods summarized in 
Table  2. Each test was carried out in three replications, 
and the averages of the obtained amounts were provided.

Data analysis
To analyze the data, which were obtained from three 
biological replicates and are expressed as the mean ± SE, 
one-way ANOVA in SPSS 16.0 was utilized. The mean 
values were separated by applying the Tukey HSD test at 
P < 0.05.

Results
Measured parameters in plants
Inoculation of peppermint by CL led to a remarkable 
increase in plant growth indices (Fig. 1), which were sig-
nificant in parameters of shoot and root length (144% and 

48%, respectively, P < 0.05), leaf number (100%, P < 0.05), 
fresh weight of roots (87%, P < 0.05), and dry biomass of 
shoots (93%, P < 0.05) (Fig. 1; Table 3).

In addition to the growth parameters, the application 
of CL in tissue culture led to a slight raise in chlorophyll 
a, b, and total carotenoids in M. piperita in compari-
son to the controls. However, no significant difference 
was obtained regarding photosynthetic pigment content 
between the treated and control plants (Table 4).

The RA concentrations in the treated and control plant 
biomasses are provided in Table 5. Based on the results, 
the average content of RA in the plants treated with CL 
were 7.68  mg. g− 1 dry weight, while in control it was 
3.42  mg. g− 1 dry weight. In other words the amount of 
RA enhanced by 125% (almost 2.3-fold) (Fig. 2; Table 5).

Measured parameters in the CL
Figure  3 displays the HPLC chromatograms of the 
intended auxin standards and a cyanobacterial sam-
ple. Furthermore, the concentrations calculated for the 
auxins in the cyanobacterial biomass are presented in 
Table 1. As summarized, IAA, IPA, and IBA are available 
in the N. spongiaeforme var. tenue ISB65 extracts with the 
predominance of IAA (35.3 ng.g− 1DW) followed by IPA 
(24.7 ng.g− 1DW) and IBA (4.2 ng.g− 1DW).

Table  2 represents the total N level (35.0 mg.L− 1), 
NH4

+ (5.0 mg.L− 1), and NO3
− (9.4 mg.L− 1) in the cyano-

bacterial biomass, as well as the measurement methods. 
The amount of chemical content demonstrates the abil-
ity of cyanobacterial elicitors to increase critical mineral 
elements such as PO4

3−, NO3
−, NH4

+, and total N in the 
culture media.

Discussion
It is well known that the existence of soil microorganisms 
in the rhizosphere and their activity play a positive role in 
plants’ growth and productivity [38], and some strains of 
microorganisms, such as cyanobacteria, positively affect 
the vegetative and reproductive growth of medicinal 
plants in pot culture conditions [26, 32, 39, 40]. On the 
other hand, techniques such as in vitro culture of plants, 
as well as the application of biotic and abiotic elicitors, 
provide valuable methods for the improvement of sec-
ondary metabolite production in medicinal plants [13, 
15, 22]. Given the scarcity of research on CL as a bioe-
licitor in medicinal plant tissue culture [41], this study 
examines the effects of CL on peppermint tissue culture.

The outcome of this study indicates that CL can sig-
nificantly improve some growth indices in the treated 
plants under tissue culture conditions (Table  3). The 
results are congruent with the impact of cyanobacteria 
on the growth of potted plants, in which the ameliorat-
ing effect of cyanobacteria is attributed to N, phytohor-
mones, and essential microelements providing features 

Table 1 Auxin content of cyanobacterial extracts (ng.g− 1DW)
Taxon Indole 3-acetic 

acid
Indole 3- butyric 
acid

Indole 
3- pro-
pionic 
acid

Nostoc spongiae-
forme ISB65

35.3 4.2 24.7

Table 2 Chemical content of cyanobacteria
Analytical Method Nostoc 

spongi-
aeforme 
ISB65

Total N (mg.L− 1) Macro kjeldahl 35.00
NO2

− (mg.L− 1) Colorimetric 0.60
NO3

− (mg.L− 1) Ultraviolet Spectrophotometric 9.40
NH4

+ (mg.L− 1) Nesslerization 5.00
Phosphate (mg.L− 1) Vanadomolybdophosphoric acid 

colorimetric
9.00

CO3
2− (mg.L− 1) Titrimetric 0.00

HCO3
− (mg.L− 1) Titrimetric 30.00

Na+ (mg.L− 1) Flame Emission Photometric 1.50
Mg2+ (mg.L− 1) EDTA Titrimetric 5.00
Ca2+ (mg.L− 1) EDTA Titrimetric 7.00
K+ (mg.L− 1) Flame Emission Photometric 0.11
EC (µS cm− 1) Platinum Electrode 15.00
pH Electrometric 6.02
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of these microorganisms [29, 31, 39, 42]. As seen in the 
analysis of cyanobacteria (Tables 1 and 2), similar to pot 
culture, the improvement of plant growth in vitro condi-
tions and the increase in plant biomass can be attributed 
to the addition of hormones, i.e., IAA, IBA, and IPA, 
and non-hormonal plant growth-promoting substances, 
e.g., NO2

−, NO3
−, NH4

+, and elemental cations such as 
K+, by cyanobacteria (Tables  1 and 2). Aside from the 
nitrogen-fixing ability of heterocystous N. spongiaeforme 
var. tenue ISB65, which results in growth enhancement of 
Nostoc-treated plants [32], the presence of cations such 
as K+ and Ca2+, as regulators of metabolic pathways and 
molecular activities of cells, in CL can result in the pro-
motion of plant growth [26, 39]. Furthermore, phytohor-
mones such as auxins, which are known for the induction 
and improvement of plant rooting and growth [43], and 
present in CL, are considered one of the main factors 
affecting the growth of treated plants.

Table 3 Effect of CL on growth indices of Mentha piperita L. in 
tissue culture after 50 days of planting (Mean ± SE)
Characters Control Nostoc spongiaeforme 

ISB65
Shoot length (cm) 26.90 ± 1.02 *
Root length (cm) 3.60 ± 0.20 5.35 ± 0.00 *
Fresh weight of shoot (g) 0.39 ± 0.29 0.55 ± 0.00
Dry weight of shoot (g) 0.16 ± 0.00 0.31 ± 0.01*
Fresh weight of root (g) 0.08 ± 0.01 0.15 ± 0.00 *
Dry weight of root (g) 0.04 ± 0.00 0.06 ± 0.00
Leaf number (no.) 34.66 ± 0.66 *
Ramification (no.) 2.00 ± 0.00 2.33 ± 0.33
* significant at the 0.05 level

Table 4 Effect of CL on photosynthetic pigments of Mentha 
piperita L. in tissue culture after 50 days planting (Mean ± SE)
Characters Control Nostoc spongiaeforme ISB65
Chl a 5.24 ± 0.02 5.67 ± 0.26
Chl b 1.17 ± 0.00 1.34 ± 0.04
Total Carotenoid 3.03 ± 0.01 3.23 ± 0.12
* significant at the 0.05 level

Table 5 Rosmarinic acid content of plant extracts (Mean ± SE)
Treatment Rosmarinic acid content 

(mg.g−1DW)
Control 3.42 ± 0.08
Nostoc spongiaeforme ISB65 7.68 ± 0.21

Fig. 1 Comparison of plants in growth factors, 0. Control (Cultured in MS medium), 1. Plants treated with Nostoc spongiaeforme ISB65 (Cultured in 
MS + CL), (bar = 5 cm)
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Fig. 2 HPLC chromatograms of the extracts from (a) control and Nostoc-treated plants in tissue culture of Mentha piperita L., (b) rosmarinic acid standard 
solution and control plant extract, and (c) rosmarinic acid standard solution and Nostoc-treated plant extract
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In the present study, measurement of the plants’ pho-
tosynthetic pigments revealed an insignificant increase 
in chlorophyll and carotenoids in plants inoculated with 
CL compared to the control group (Table  4). Pigments 
are a principal index for the assessment of photosynthetic 
quality and quantity in various environmental conditions 
[44]. Some investigations have indicated that the addi-
tion of growth-promoting substances can increase the 
level of photosynthetic pigments [44, 45]. However, our 
investigation suggests that the presence of organic car-
bon in CL can alter the plant’s metabolism and prevent 
the enhancement of photosynthetic pigments [46].

The results of the current study showed that CL can 
also upregulate some metabolites of plants; Nostoc-
treated plants (MS + CL culture medium) revealed a 2.3-
fold increase in RA production (Table 5). Various factors, 
such as environmental factors, including photoperiod, 
moisture, temperature, pests, and disease, as well as the 
chemical content of culture media, could significantly 

alter the content of secondary metabolites in plants [47, 
48]. The mentioned factors can directly or indirectly 
impact metabolic pathways and secondary metabolite 
production. Some of these factors are more effective in 
RA accumulation under cell and tissue culture conditions 
and are considered the key factors contributing to the 
final RA content in the tissue culture of medicinal plants. 
The most important factors affecting RA biosynthesis in 
medicinal plants are sucrose concentration [49], plant 
growth regulators such as auxins, cytokinin, and abscisic 
acid [21, 49], and the N source of the medium such as 
NO3

- and NH4
+ concentrations [50]. 

Therefore, RA production in aromatic and medicinal 
plants can be optimized by upgrading cell and tissue cul-
ture methods, such as the addition of some precursors 
to culture media [51]. It seems that stimulation of some 
metabolite pathways can be the main factor in trigger-
ing the biosynthesis of RA and phenolic compounds 
[52]. Some microorganisms, as bioelicitors, can also be 

Fig. 3 HPLC chromatogram of auxin standards and cyanobacterial materials; a HPLC chromatogram of auxin standards, b HPLC chromatogram of Nostoc 
spongiaeforme var. tenue ISB65 extract

 



Page 8 of 10Shariatmadari et al. BMC Plant Biology          (2024) 24:190 

inoculated into plants for in vitro cultivation to stimulate 
the production of RA and phenolic compounds [53]. In 
this way, the enhancement of RA in transformed roots 
inoculated with microorganisms is attributed to signal-
ing molecules, phytohormones, and stimulation of the 
biosynthetic pathways of key enzymes and their induced 
genes [54]. Moreover, an enhancement of total pheno-
lic content in the inoculated roots can be linked to the 
Krebs cycle and plastid metabolism since the processes 
augment the amount of the precursors of phenolic com-
pounds (e.g., fatty acids and carotenoids) and amino acids 
(e.g., tyrosine) [55]. Some researchers have introduced 
phytohormones such as cytokinin, abscisic acid, IBA, and 
2,4-D as effective factors in stimulating the biosynthesis 
of RA and phenolic compounds under cell and tissue cul-
ture conditions in some plant species [21, 56, 57].

In this study, high concentrations of phytohormones 
such as IAA and IPA were observed in cyanobacterial 
biomass (Table 1). IBA was another phytohormone found 
in the CL (Table 1). Since there are many cyanobacteria 
with the ability to biosynthesize phytohormones, includ-
ing abscisic acid, gibberellins, cytokinins, and auxins 
[30, 46], they have the potential to use purposefully to 
enhance some metabolites of plants, especially under in 
vitro conditions. 

In addition, an increase in the N sources of the culture 
medium by CL can be considered one of the main fac-
tors enhancing plant growth and the production of some 
plant metabolites. According to Ilieva and Pavlov, 1.2-
fold improvement in NO3

− ion concentration in the cell 
culture of Lavandula vera results in an increase in RA 
concentration [50]. Rezasoltani et al. reported that the 
total nitrogen level of the extracts of the heterocystous 
cyanobacterium Anabaena vaginicola composes 10.63% 
of the cell dry weight [46].

The protective reactions of plants against several 
elicitors can stimulate the phenylpropanoid metabolic 
pathway, leading to the production of RA and free phe-
nolic compounds [22]. The results of the current study 
reflected the ability of CL to induce growth and biomass 
production and to enhance RA content in peppermint. 
This increase can be attributed to the higher N source, 
auxin, and other mineral content of CL.

Conclusions
In conclusion, the use of cyanobacterial bioelicitor under 
tissue culture conditions can increase plant growth, as 
well as the content of valuable phenolic compounds such 
as RA in M. piperita. Additionally, an enhancement in 
plant leaf number and biomass under tissue culture con-
ditions is considered important, especially due to the 
economic value of this aromatic plant, as well as its appli-
cation in food, cosmetic, and pharmaceutical products. 
Based on these results, the presence of phytohormones 

and the N content of CL can be regarded as the most 
important factors in altering metabolic pathways and 
improving RA production. Due to the economic implica-
tions of M. piperita, the use of a cyanobacterial bioelici-
tor is recommended under tissue culture conditions as a 
method for increasing RA production and possibly other 
valuable secondary metabolites.
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