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Abstract 

Background The fertile islands formed by shrubs are major drivers of the structure and function of desert ecosys-
tems, affecting seedling establishment, plant–plant interactions, the diversity and productivity of plant communities, 
and microbial activity/diversity. Although an increasing number of studies have shown the critical importance of soil 
microbes in fertile island formation, how soil microbial community structure and function are affected by the differ-
ent fertile island effect intensities is still unknown. As an endangered and dominant shrub species in the West Ordos 
Desert, Tetraena mongolica was selected for further exploration of its fertile island effect on the soil microbial com-
munity in the present study to test the following two hypotheses: (1) T. mongolica shrubs with different canopy sizes 
exert fertile island effects of different strengths; (2) the soil microbial community structure and function beneath the T. 
mongolica canopy are affected by the fertile island, and the strength of these effects varies depending on the shrub 
canopy size.

Results The contents of soil total nitrogen (TN) and available phosphorus (AVP) were significantly greater beneath T. 
mongolica shrub canopy than outside the shrub canopy. With increasing shrub canopy size, the enrichment of soil TN 
and AVP increased, indicating a stronger fertile island effect. The structure and function of soil microbial communities, 
including fungal, archaeal and bacterial communities, are affected by the fertile island effect. An increase in canopy 
size increased the relative abundance of Ascomycota (Fungi) and Thaumarchaeota (Archaea). For the soil microbial 
functional groups, the relative abundance of endophytes in the fungal functional groups; steroid hormone biosynthe-
sis, sphingolipid metabolism, and steroid biosynthesis genes in the bacterial functional groups; and nonhomologous 
end-joining and bisphenol degradation functional genes in the archaeal functional groups increased significantly 
with increasing T. mongolica canopy size.

Conclusions These results revealed that T. mongolica had a fertile island effect, which affected the soil microbial 
community structure and functions, and that the fertile island effect might increase with increasing shrub canopy 
size. The fertile island effect may strengthen the interaction between T. mongolica shrubs and microbes, which may be 
beneficial to the growth and maintenance of T. mongolica.
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Introduction
Deserts cover approximately 30% of the world’s land 
area [1]. The total area of desert ecosystems in China is 
approximately 1.65 ×  106  km2, accounting for 17% of the 
total land area [2]. In desert ecosystems, for example, 
the western Ordos desert in China, the dominant spe-
cies in plant communities are mostly woody plants. The 
western Ordos desert is a centre of biological diversity 
for rare and endangered shrubs in China’s desert regions, 
hosting approximately 300 species of shrub plants [3–5]. 
However, due to changes in land use type, industrial pol-
lution and other human activities, as well as the stress of 
harsh environments, desert ecosystems are facing severe 
and persistent threats, and the distribution areas of rare 
plants are gradually shrinking and becoming discon-
nected [6, 7]. There are many rare and endangered shrub 
species distributed in the western Ordos desert, includ-
ing Tetraena mongolica, Ammopiptanthus mongolicus, 
and Helianthemum songaricum [3, 5]. Desertification 
and climate change are among the major ecological and 
environmental issues faced by these rare and endan-
gered shrub species and have resulted in biodiversity 
loss in this region [5]. It is projected that the desertifica-
tion area under representative concentration pathways 
(RCPs) RCP8.5 and RCP4.5 will increase by 23% and 
11%, respectively, by the end of the twenty-first century 
relative to the 1961–1990 baseline, which could pose an 
enormous threat to desert vegetation, especially for con-
structive species [8, 9].

Desert vegetation is sparsely distributed with low shrub 
coverage. The presence of shrubs enriches soil resources 
under their canopies, forming so-called ‘fertile islands’ 
[10, 11]. Fertile islands might affect the spatial distribu-
tion and cycling of nutrients [12, 13], thereby affecting 
seedling establishment, plant–plant interactions, the 
diversity and productivity of plant communities, and 
microbial activity/diversity [14–18]. As an endangered 
but dominant shrub species, T. mongolica can play an 
important role in maintaining and improving the fragile 
desert ecosystem in the western Ordos desert, as well 
as in ensuring the balance of regional ecology and the 
maintenance of species diversity [19–21]. Previous stud-
ies have shown that T. mongolica shrubs can effectively 
accumulate soil nutrients, improve soil texture and form 
typical fertile islands [22]. However, the fertile island 
effects of T. mongolica shrubs on soil microbes are not 
fully understood.

Soil microbes are important components of ecosys-
tems and play crucial roles in regulating ecosystem 

functions and features, such as improving nutrient 
cycling, maintaining soil fertility, responding to cli-
mate change, and sequestering carbon [23–26]. Soil 
microbes can improve nutrient availability by degrad-
ing plant litter or residue and increasing nutrient 
uptake efficiency through reciprocity (e.g., mycorrhizal 
fungi) [27, 28]. The shrubs in desert ecosystems form 
fertile islands, which provide a ‘better’ (dark and wet) 
environment and rich carbon sources for decomposers 
[29, 30]. The abundances of fungi and bacteria beneath 
shrub canopies are reportedly greater than those in 
adjacent open areas lacking vascular vegetation in arid 
regions [31, 32]. Therefore, the properties of microbial 
communities can directly (for example, through nutri-
ent fixation, litter decomposition, and organic matter 
mineralization) and indirectly (for example, through 
nutrient redistribution via fungal networks) affect the 
ability of plant patches to capture and recycle nutri-
ents, thereby enhancing the fertile island effect [33, 34]. 
The strength of the fertile island effect may be closely 
related to the size of the shrub canopy [35]. Shrubs with 
larger canopies have greater ability to intercept litter 
and greater ability to improve soil and light conditions 
beneath the canopy [36]. This means that large scrub 
areas may have a stronger fertile island effect and thus 
may have a greater impact on microbes. An increasing 
number of studies have shown the critical importance 
of soil microbes in the formation of fertile islands [13, 
37–43]; however, the role of soil microbes in the forma-
tion of fertile islands of different sizes has also not been 
fully studied.

In this study, we examined the fertile island effects of 
T. mongolica shrubs of different canopy sizes on the soil 
microbial community structure and function in a desert 
ecosystem in western Ordos, China, to test the follow-
ing two hypotheses: (1) T. mongolica shrubs with differ-
ent canopy sizes exert fertile island effects of different 
strengths; (2) the soil microbial community structure and 
function beneath the T. mongolica canopy are affected 
by the fertile island formed by T. mongolica shrubs, and 
the strength of these effects varies depending on the 
canopy size of the shrub. Studying the impacts of the fer-
tile island effect exerted by T. mongolica shrubs on soil 
and soil microbes would be helpful for understanding 
the relationships between T. mongolica shrubs and soil 
microbes, as well as the growth strategies of T. mongolica, 
and provide a theoretical basis for the protection of rare 
plant biodiversity and desertification control and even for 
maintaining the stability of desert ecosystems.
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Results
Among the 30 different sizes of T. mongolica, the range of 
the shrub canopy was from 0.013  m2 to 4.081  m2, with an 
average of 0.619  m2. The contents of soil total potassium 
(TK) ranged from 16.99 to 20.89 g/kg, total phosphorus 
(TP) from 302.64 to 421.38 mg/kg, soil total nitrogen 
(TN) from 0.262 to 0.581 g/kg, soil total carbon (TC) 
from 6.61 to 22.77 g/kg, soil organic carbon (SOC) from 
1.92 to 6.56 g/kg, soil inorganic carbon (SIC) from 3.67 
to 17.56 g/kg, soil available phosphorus (AVP) from 2.54 
to 16.85 mg/kg, and soil available potassium (AVK) from 
88.92 to 238.05 mg/kg; soil pH ranged from 8.59 to 9.59. 
The specific data for each shrub is shown in Table S1.

The fertile island effects of T. mongolica shrubs on soil 
nutrients
The soil TN and AVP beneath the shrub canopy were 
significantly greater than those outside the canopy, 
while the soil TK and pH beneath the canopy were sig-
nificantly lower than those outside the canopy (Fig.  1, 
Table S2).

With increasing canopy size, the soil TN and AVP 
significantly increased, while the soil TK and TIC sig-
nificantly decreased. The soil TP, pH, AVK, TC, and 
SOC did not significantly change with increasing can-
opy size (Fig. 2).

Fig. 1 Soil properties beneath and outside the T. mongolica canopy. The units of TP, AVK, and AVP are mg/kg, and the units of TK, SIC, TN, TC, 
and SOC are g/kg. * indicates a significant difference at p < 0.05; ** indicates a significant difference at p < 0.01; *** indicates a significant difference 
at p < 0.001; ns indicates no significant difference
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The fertile island effect of T. mongolica shrubs on the soil 
microbial community composition
The fungal richness beneath the shrub canopy was sig-
nificantly lower than that outside the shrub canopy, 
while there was no significant difference in the fungal 

Shannon index beneath and outside the shrub canopy; 
the bacterial richness and Shannon index beneath the 
shrub canopy were significantly greater than those out-
side the shrub canopy; and there was no significant 
difference in the archaeal richness or Shannon index 
beneath and outside of the shrub canopy (Fig. 3).

Fig. 2 Linear regression analysis between T. mongolica canopy size and soil nutrients
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With increasing shrub canopy size, the richness of the 
fungi significantly decreased (p < 0.1), and the Shannon 
index of the archaea significantly decreased (p < 0.05) 
(Fig. 4).

The relative abundances of the major phyla in the fun-
gal community beneath the T. mongolica shrub canopy 
from the most to least abundant were Ascomycota, 
Basidiomycota, Mortierellomycota, Chytridiomycota, 
Glomeromycota, Cercozoa, Rozellomycota, Calcarispori-
ellomycota, Olpidiomycota, and Neocallimastigomycota 

(Figure S1). With increasing shrub canopy size, the rela-
tive abundance of Ascomycota significantly increased 
(p = 0.001), while the relative abundance of Basidiomy-
cota showed a decreasing trend (marginally significant, 
p < 0.1) (Fig. 5a, b).

The relative abundances of the major phyla in the bac-
terial community from high to low were Actinobacteria, 
Proteobacteria, Chloroflexi, Gemmatimonadetes, Aci-
dobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, 
Planctomycetes, and Verrucomicrobia (Figure S2). With 

Fig. 3 Richness and Shannon indices of the different soil microbial groups beneath and outside the T. mongolica canopy. *** indicates a significant 
difference at p < 0.001 between the inside and outside canopies; **** indicates a significant difference at p < 0.0001; ns indicates no significant 
difference
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Fig. 4 Linear regression between plant canopy size and the relative abundance of the major soil microbial communities. Panels a and b are 
the major phyla of the fungal community, panels c and d are the major phyla of the bacterial community, and panels e and f are the major phyla 
of the archaeal community
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Fig. 5 Linear regression analysis of T. mongolica canopy size and the soil microbial Shannon index and richness. Panels a and b are 
the Shannon-index and richness of the fungal community, panels c and d are the Shannon-index and richness of the bacterial community, 
and panels e and f are the Shannon-index and richness of the archaeal community
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increasing shrub canopy size, the relative abundance of 
Actinobacteria significantly decreased (p < 0.05), while 
that of Proteobacteria significantly increased (p < 0.05) 
(Fig. 5c, d).

The phylum composition of the archaeal community 
was relatively simple, with only four phyla present, and 
the relative abundances of the phyla from high to low 
were Thaumarchaeota, Euryarchaeota, Woesearchae-
ota_DHVEG-6, and Aenigmarchaeota (Figure S3). With 
increasing shrub canopy size, the relative abundance of 
Thaumarchaeota marginally increased (p < 0.1), while 
that of the other three phyla did not change significantly 
(Fig. 5e, f ).

The fertile island effect of T. mongolica shrubs on the soil 
microbial functional composition
The functional groups of the fungi were divided accord-
ing to their nutrient acquisition modes using FUNguild. 
The relative abundances of the fungal function groups, 
from highest to lowest, were as follows: saprotrophs, 
pathogens, endophytes, parasites, ectomycorrhizal 
fungi, epiphytes, arbuscular mycorrhizal fungi (AMF), 
and endomycorrhizal fungi (Figure S4). Except for AMF, 

there was no significant relationship between the rich-
ness of the main functional groups and the shrub canopy 
size (Figure S5). The richness of AMF decreased signifi-
cantly (p < 0.01) (Fig. 6a); however, the relative abundance 
of AMF did not change significantly with increasing 
shrub canopy size (Figure S6). The relative abundance of 
endophytic fungi significantly increased (p < 0.001) with 
increasing canopy size (Fig. 6b).

Bacterial functional groups were classified by using 
KEGG metabolic pathway analysis. The five most abun-
dant bacterial functional groups in descending order 
of relative abundance were carbohydrate metabolism, 
amino acid metabolism, metabolism of cofactors and 
vitamins, metabolism of terpenoids and polyketides, and 
metabolism of other amino acids (Figure S7). Shrub can-
opy size significantly affected bacterial functional groups 
related to the biosynthesis of steroid hormones, sphin-
golipid metabolism, photosynthesis antenna proteins, 
and steroid biosynthesis (Fig. 7a). With the exception of 
photosynthesis antenna proteins, three of the four func-
tional groups are involved in the primary metabolic path-
way. The abundance of these three groups significantly 
increased (p < 0.001) with canopy size (Fig. 7b, c and e), 

Fig. 6 Linear regression analysis of T. mongolica canopy size and richness of arbuscular mycorrhizal fungi (a) and relative abundance of endophytic 
fungi (b)
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Fig. 7 Importance indices of the bacterial functional groups according to T. mongolica canopy size (a) and correlations between T. mongolica 
canopy size and the main bacterial functional groups (b-e). An increase in the MSE (%) is the evaluation criterion of feature importance, 
and the higher the value is, the more important the predictor variable is. * represents significance at p < 0.05; ** represents significance at p < 0.01
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while that of the photosynthesis antenna protein group 
marginally decreased (p < 0.1) (Fig. 7d).

The archaeal functional groups were classified based 
on the KEGG metabolic pathways. The five most 
abundant functional groups were involved in amino 
acid metabolism, cofactor and vitamin metabolism, 
carbohydrate metabolism, terpenoid and polyketide 
metabolism, and exogenous biodegradation and metab-
olism, arranged in descending order (Figure S8). Shrub 

canopy size had a significant impact on the nonhomol-
ogous end-joining and bisphenol degradation functions 
(Fig.  8a). These genes are associated with biological 
genetics and nutrient cycling and are involved in the 
replication and repair of genetic information process-
ing in the primary metabolic pathway and xenobiotic 
biodegradation and metabolism functions, respec-
tively. The relative abundance of these two functions 
increased (p < 0.05) with increasing T. mongolica can-
opy size (Fig. 8b and c).

Fig. 8 Importance indices of archaeal functional groups in response to T. mongolica canopy size (a) and correlations between T. mongolica 
canopy size and the nonhomologous end-joining functional group (b) and bisphenol degradation functional group (c). An increase in the MSE (%) 
is the evaluation criterion for feature importance, and the higher the MSE is, the more important the predictor variable is. * represents significance 
at p < 0.05; ** represents significance at p < 0.01
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Discussion
Fertile island effects of T. mongolica shrubs with different 
canopy sizes
Plant attributes, such as canopy size, plant height and 
biomass accumulation, may influence the strength of 
the fertile island effect through various mechanisms; in 
particular, greater plant cover improves the efficiency of 
nutrient redistribution through more developed roots 
that redistribute nutrients from the interspaces to the 
vegetated areas and through the accumulation of more 
litter that releases nutrients to the soil [10, 44–46]. Nutri-
ents are recycled more effectively in the plant‒soil system 
by soil microbes; for example, studies show that micro-
bial-driven enhancement of soil nitrogen cycling typi-
cally associated with high plant diversity levels stimulates 
productivity [46]. Higher levels of nutrients in the soil 
beneath the shrub canopy were found in sandy grasslands 
[35, 37], deserts [10, 47] and savannas [48]. A meta-anal-
ysis of paired control data related to shrub-encroached 
grasslands (SEGs) and non-SEGs collected from 142 
studies worldwide showed that shrubs increased topsoil 
organic carbon [49]. Evidence has shown that the 0–60 
cm soil AV, AP, Ak and SOC beneath the T. mongolica 
canopy are significantly greater than those outside the 
canopy, and the difference is more pronounced at the top 
of the soil [21], which was similar to the results of this 
study. As expected, our results showed that there was 
a fertile island effect beneath the T. mongolica shrub 
canopy. The TN and AVP concentrations beneath the T. 
mongolica shrub canopy were significantly greater than 
those outside the shrub canopy, and the soil pH beneath 
the shrub canopy was significantly lower than that out-
side the canopy. These findings suggested that T. mongol-
ica shrubs could change the soil environment.

Moreover, the results of the present study also proved 
that the size of the T. mongolica shrub canopy was related 
to fertile island effects. The soil TN and AVP beneath the 
shrub canopy increased with increasing shrub canopy 
size in the present study (Fig. 2), similar to the findings 
of Rhodomyrtus tomentosa shrubs, which showed that 
the soil TN and TP beneath a large canopy were signifi-
cantly greater than those beneath a medium canopy [36]. 
This might be because the larger the shrub canopy is, the 
better it is at preserving and acquiring litter under strong 
wind conditions and thus the more organic matter it is 
able to contain [50]. Shrubs with larger canopies usually 
have greater biomass, and thus, they may produce more 
litter [18, 51]. These litter inputs may decompose, and 
nutrients recirculate more efficiently within the plant‒
soil system [13].

In summary, the soil TN and AVP contents beneath the 
T. mongolica canopy were significantly greater than those 
outside the canopy, and they increased with increasing 

T. mongolica canopy size. These results partially support 
our first hypothesis, which is that T. mongolica shrubs 
with different canopy sizes have fertile island effects of 
different strengths.

The fertile island effects of T. mongolica shrubs on soil 
microbes
The abundance, diversity, and composition of soil 
microbial communities in arid regions worldwide 
mainly regulate nutrient cycling and litter decomposi-
tion rates [31, 52]. The effect of fertile island can recruit 
soil microbes through higher soil nutrients in the sur-
rounding soil matrix, and more active soil microbial 
communities can also indirectly enhance the fertile 
island effect, which in turn enhances ecosystem func-
tion by more effectively mobilizing and redistributing 
nitrogen and other nutrients from the surrounding soil 
matrix [53–56]. In addition, larger plant canopies pro-
vide more suitable habitats for microbial communities 
because they buffer extreme surface temperatures and 
retain soil moisture [15]. Our study showed that the 
fertile island effect of T. mongolica shrubs significantly 
affected the community structure of fungi and bacteria, 
and some functional groups of soil microbes changed 
significantly with increasing canopy size. These results 
supported our second hypothesis, which was that 
the soil microbial community structure and function 
beneath the T. mongolica canopy are affected by the fer-
tile island effect exerted by T. mongolica shrubs, and the 
strength of this effect varies depending on the canopy 
size of the shrub. To further investigate the response of 
soil microbial functional diversity to fertile island size, 
fungi, bacteria, and archaea were classified into func-
tional groups.

For fungi, the relative abundance of endophytic fungi 
showed a significant upwards trend with increasing fertile 
island effect size in the present study (Fig. 6). Endophytic 
fungi can grow in different organs, histiocytes and inter-
cellular spaces of plants and are distributed in leaves, leaf 
sheaths, seeds, flowers, stems and roots. These fungi can 
promote the growth and development of plants by syn-
thesizing auxin or auxin precursors and promoting the 
absorption of nutrient elements [57–60]. Therefore, the 
relative abundance of endophytic fungi increased with 
increasing fertile island effect size, suggesting that the 
fungal community was more conducive to plant growth. 
The enrichment of soil nutrients provided a larger niche 
space for soil microbes and may intensify the competitive 
relationship between soil microbial communities, result-
ing in a significant decline in the abundance of AMF with 
the increase in the fertile island effect in the present study. 
The change in the relative abundance of AMF was not 
significant with the increase in the effect of fertile island, 
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indicating that the increase in nutrients due to the increase 
in the fertile island effect would be more conducive to the 
survival and reproduction of some AMF. Other studies 
have shown that plant growth does not increase with the 
abundance of AMF, and plant growth following inocula-
tion with a mixture of six arbuscular mycorrhizal fungi was 
similar to that following inoculation with a single AMF 
[61]. However, there was no direct evidence in this study 
to indicate whether the changes in AMF were beneficial to 
the growth and development of T. mongolica, which might 
be related to the specific selection of plants or changes in 
nutrients; this topic needs to be further explored.

For bacteria, the relative abundance of three func-
tional genes, namely, those involved in steroid hormone 
biosynthesis, sphingolipid metabolism, and steroid bio-
synthesis, significantly increased with increasing fertile 
island effect. The biosynthesis of steroid hormones helps 
regulate plant growth processes, such as cell elongation, 
ageing, vessel formation, and stress resistance [62–65]. 
Plant sphingolipid metabolism plays an important role 
in plant development, including cell growth, differen-
tiation, reproduction, and response to various stresses 
[66–68]. The biosynthesis of steroids also plays an impor-
tant role in plant growth and developmental signalling 
[65, 69]. The functional traits of microbial genomes can 
be classified into three main life history strategies: high-
yield type (Y), resource acquisition type (A), and stress 
tolerance type (S) [70]. The increase in functional genes 
related to the biosynthesis of steroid hormones, sphin-
golipid metabolism, and steroid biosynthesis and the 
decrease in functional genes related to photosynthesis 
antenna proteins reflected the life history strategy of the 
stress tolerance type (S). This indicated that with increas-
ing T. mongolica canopy size, the functional gene expres-
sion of bacterial functional groups tended to increase 
in response to stress more than photosynthesis, which 
might be more conducive to maintaining the growth and 
development of T. mongolica in harsh environments.

For the archaeal functional groups, enhancing the fer-
tile island effect significantly affected the relative abun-
dance of genes involved in nonhomologous end-joining 
and bisphenol degradation, both of which increased sig-
nificantly with increasing fertile island effect. The nonho-
mologous end-joining function is related to cell ageing, 
repair, and genetics [71], while the bisphenol degradation 
function is beneficial to seed germination and the growth 
of plants, and it has been shown that the higher the con-
centration of bisphenol is, the stronger the inhibitory 
effect on seed germination [72, 73]. Low concentrations 
of bisphenol A promote plant root growth [74, 75]. The 
upregulation of the expression of these two functional 
genes also reflected the life history strategy of stress 
tolerance (S) [70]. Most studies have shown functional 

redundancy in soil microbial communities [76, 77], 
which is similar to the redundancy species hypothesis 
used in biodiversity and stability maintenance mecha-
nism research [78]. Functional redundancy plays a crucial 
role in the stability of microbial communities. Even if 
the external environment changes and the structure of 
the microbial community changes, microbial function 
remains stable, and the original physiological process 
is maintained [79]. This study showed that the diversity 
of archaea significantly decreased with increasing fer-
tile island effect, indicating that the fertile island effect 
caused by the different sizes of the T. mongolica shrub 
canopy significantly changed the community structure of 
archaea. However, the percentage of predicted functional 
groups of archaea associated with changes in the fertile 
island effect according to the random forest model was 
only 6.35%, which may be due to functional redundancy 
in the archaeal community.

Conclusions
Our results proved that there was a fertile island effect 
exerted by T. mongolica shrubs, resulting in enrich-
ment of soil TN and AVP and changes in the soil micro-
bial community. Additionally, the fertile island effect 
increased with increasing T. mongolica canopy size, 
which significantly increased the relative abundance of 
endophytic fungi and biased the expression of functional 
genes of bacteria and archaea. These changes in soil 
microbes may be conducive to the survival of T. mon-
golica shrubs in harsh environments. This study compre-
hensively revealed the impacts of the fertile island effect 
exerted by T. mongolica shrubs on soil and soil microbes 
and provided a theoretical basis for T. mongolica shrub 
protection, biodiversity maintenance and desertifica-
tion control. More studies are needed to reveal how the 
enriched nutrients are used by plants and soil microbes 
and how the relationship between shrubs and soil 
microbes changes with the strengthening of the fertile 
island effect to help shrubs survive.

Methods
Study area and plant material
The study was conducted in the Western Ordos National 
Nature Reserve, Inner Mongolia, China (106°53′1.34’ E, 
40°4′54.43’ N, 1080 m a.s.l.). This region has continental 
monsoon climate characteristics, such as a warm tem-
perate zone, large diurnal temperature difference, lit-
tle rain, and long periods of sunshine. The annual mean 
temperature is 7.8–8.1 ℃, the annual mean precipitation 
is 162–272 mm (concentrated in July and August), the 
annual potential evaporation is 2470–3481 mm, and the 
annual mean relative humidity is 43% [80]. It is located 
in the desert and desert steppe transitional zone and has 
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serious desertification problems; many rare and endan-
gered plant species, such as Tetraena mongolica Maxim., 
Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f., 
and Helianthemum soongoricum Shenk, are distributed 
there.

Tetraena mongolica Maxim is a relict shrub of the 
ancient Mediterranean flora and is the only species in the 
genus Tetraena of the family Zygophyllaceae. It is a small, 
low, strongly branched shrub, usually 40–60 cm tall. It is 
distributed only in the western Ordos desert (Fig. 9) and 
the northern low mountains of Helan Mountain, China, 
where it plays a critical role as a windbreak and stabiliz-
ing the soil.

Investigation, sampling and laboratory analysis
In September 2020, 30 T. mongolica shrubs of different 
sizes (with canopies ranging from 0.01  m2 to 4.08  m2; 
Table S1) were selected for investigation. The longest axis 
(C1) and the axis perpendicular to C1 (C2) of the plant 
canopy (m), plant height (cm) and branch number of T. 
mongolica were recorded. The shrub canopy size was cal-
culated as follows:

Three surface soil (0 ~ 20 cm) cores (5 cm in diam-
eter) were collected around each shrub base and were 

Canopy =
C1 + C2

2

2

× π ÷ 4

Fig. 9 Sampling site and the distribution area of T. mongolica in the western Ordos desert
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thoroughly mixed in situ to create one composite sample. 
Each soil sample was divided into two parts. One part 
was frozen for microbial sequencing, and the other was 
used for laboratory analysis.

In the laboratory, soil pH was measured using a pH 
meter (PB-10, Sartorius, Germany); soil total carbon (TC, 
g/kg) and nitrogen (TN, g/kg) were determined with an 
Elemental Analyser (Vario MACRO cube CHNOS Ele-
mental Analyser, Elementar Analysensysteme GmbH, 
Hanau, Germany); soil total phosphorus (TP, mg/kg), 
potassium (TK, g/kg) and available potassium (AVK, 
mg/kg) were determined by inductively coupled plasma-
atomic emission spectrometry (iCAP 6300 ICP‒OES 
Spectrometer, Thermo Fisher, USA); soil inorganic car-
bon (SIC, g/kg) was determined by a solid-state infrared 
carbon‒sulfur analyser (multi EA4001, Analytik-Jena 
AG, Germany); soil organic carbon (SOC, g/kg) was cal-
culated by subtracting SIC from TC; and soil available 
phosphorus (AVP, mg/kg) was determined by colorim-
etry using a UV‒visible spectrophotometer (UV‒2550, 
UV‒visible SPECTRO Photometer, Shimadzu, Japan).

Soil DNA was extracted from the soil samples, and the 
purification of PCR product DNA was conducted using a 
QIAquick gel extraction kit (QIAGEN, German) in accord-
ance with the manufacturer’s instructions. This procedure 
was followed by sequencing on an Illumina MiSeq 300 PE 
platform (Illumina, San Diego, CA, USA) at Allwegene 
Technology, Beijing, employing real-time PCR for enhanced 
accuracy. After rigorous quality control measures, more than 
95% of the initial sequence readings were successfully pre-
served. Sequences containing less than 200 base pairs, dis-
playing a low mass fraction, or comprising ambiguous bases, 
incomplete primer sequence matches, or barcode label 
discrepancies (with a sequence ≤ 20) were systematically 
excluded from the study. For data analysis, QIIME software 
was utilized. In this study, the operational taxonomic unit 
(OTU), which serves as an operational definition, was used 
for the classification of closely related entities in phylogenetic 
and population genetic analyses. The clustering of sequences 
into OTUs was performed at a 97% similarity threshold 
using the UPARSE algorithm. Classification of each OTU 
was meticulously carried out using the SILVA and UNITE 
databases [81]. The species diversity of the soil microbes, 
including bacteria, archaea, and fungi, was calculated based 
on the number of OTUs in the present study. Reference the 
cited previous study [43] for more details on the experiment.

Statistical analysis
All the data analyses in this section were performed in R 
(version 4.11).

The functional groups of fungal communities were 
predicted by FUNGuild [82], and Picrust2 was used to 
predict the functional groups of bacterial and archaeal 
communities through KEGG pathway enrichment 
analysis [83]. The Shannon diversity indices of the soil 
microbes were calculated via the vegan package. The 
pheatmap package [84] was used to construct a ther-
mal map of the relative abundance of the soil microbes. 
The ggplot2 [85] and ggpubr [86] packages were used 
to compare the differences in soil microbial and soil 
properties beneath and outside the shrub canopy, 
respectively, with the Wilcoxon rank sum test used to 
test the significance. Soil property data were log10-
transformed. Linear regression analysis was performed 
between the plant canopy and the soil and soil micro-
bial traits, and a linear regression was drawn with the 
ggplot2 package.

The random forest package [87] was used to screen 
the functional groups of bacteria and archaea related 
to the shrub canopy. First, the functional gene groups 
with low abundance were filtered to exclude some 
functional gene groups that may be biased by sequenc-
ing or have low classification contributions, and the 
functional gene groups with relative abundance > 0.1 
were selected to construct the random forest model. 
Second, to facilitate the subsequent evaluation of the 
performance of the random forest model, the total 
dataset was divided into a training set (70%) and a 
test set (30%). The training set was used to train the 
algorithm to recognize the patterns and relationships 
between the gene expression and the outcome vari-
able, and the test set was used to evaluate the model’s 
performance. According to the results of tenfold cross-
validation, the significant predictor variables of the 
functional gene groups were evaluated, and 10 and 15 
important functional bacterial groups were selected 
from bacteria and archaea, respectively. The index 
‘IncNodePurity’ was used as the importance index of 
functional gene groups in response to plant canopy 
size, and the final random forest model was con-
structed; the greater the value of the "IncNodePurity" 
indicator was, the greater the importance of this vari-
able. The rfPermute package [88] was used to test the 
significance of variables, and the ggplot2 package was 
used to visualize the results.
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