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Abstract 

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable 
bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was ini-
tiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contami-
nated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated 
with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, 
protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In 
contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants 
inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving 
seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activi-
ties of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In 
addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil 
contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial 
strains enhanced plant growth by reducing oxidative stress caused by metals.

Keywords Antioxidative metabolism, Heavy metals toxicity, Metallothioneins (MTs), Remediation, Scanning electron 
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Introduction
Metal pollution has a detrimental effect on the soil eco-
system, leading to various ecological changes, such as 
changes in soil structure, reduction in soil fertility and 

effects on soil microorganisms [1]. Plants growing in pol-
luted soils take up toxic metals that interfere with plant 
growth. Morphological, biochemical and physiological 
growth processes in plants are significantly altered by 
the toxicity of heavy metals [2–4]. Plants synthesis active 
compounds known as reactive oxygen species (ROS) as 
a result of heavy metal toxicity [5–7]. ROS induce oxida-
tive stress in plants, which affects growth characteristics 
and alters the redox status of plant cells [8–10]. Vegeta-
bles grown near industrial sites develop poorly due to the 
large amount of heavy metals in the soil [11]. Micro-
organisms play a key role in promoting plant health [12]. 
Plant growth-promoting rhizobacteria (PGPR) are a 
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collection of free-living rhizobacterial communities that 
competitively colonise root surfaces and promote plant 
growth by secreting a variety of phytostimulantchemicals 
and sustainably prevent various causes of host diseases 
[13–15]. Plants are further protected from the invasion 
of phytopathogens by PGPR that secrete antibiotics, anti-
fungal chemicals, hydrocyanic acid (HCN), chitinase, and 
other substances. These PGPR strains have been detected 
for several years in the metal-contaminated rhizospheres 
of various crops, including vegetables [16]. Plant growth-
promoting rhizobacteria (PGPR) can enhance soil pro-
ductivity and bioremediation efficacy by utilising various 
microbes and chemicals to treat or detoxify contami-
nants in an environmentally benign manner [17]. These 
PGPR and their exudates detoxify a wide range of organic 
and inorganic pollutants such as heavy metals and vari-
ous pesticides and herbicides [18]. PGPRs are most com-
monly used for this purpose as they can be used in situ 
and are eco-friendly and non-polluting environmentally 
favourable [19, 20]. PGPRs improve plant growth and 
production by providing plants and soils with the neces-
sary nutrients and bioremediate polluted soils [21]. The 
rapidly expanding industry, uncontrolled and untreated 
release of xenobiotic pollutants and the use of low-qual-
ity liquids (wastewater) for irrigation in agriculture pose 
a serious and unsustainable threat to the sustainabil-
ity of agroecological niches [22–24]. On the other hand 
the availability of metals to plants, is determined by soil 
variables such as pH, cation exchange capacity (CEC), 
organic matter content and clay adsorption [25]. Heavy 
metals accumulate in the soil and enter the food chain, 
where they are passed on to end consumers and endanger 
human health [26]. Moreover, the toxicity of heavy met-
als entering plant tissue can interfere with a number of 
physiological activities. The toxicity of heavy metals also 
leads to oxidative stress, disruption of pigment function 
and changes in protein activity [27]. Under metal stress, 
excessive ROS production can cause severe damage to 
plant cell structures, including (i) oxidation of proteins 
and lipids, (ii) nucleic acid damage, (iii) enzyme inhibi-
tion, and (iv) cell death [23]. Plants have usually devel-
oped various adaptations to protect themselves from the 
harmful effects of ROS [20]. Plants have developed dif-
ferent approaches against the toxicity of heavy metal ions 
to minimise their harmful effects. Plant root cells adsorb 
heavy metals through the formation of polysaccharide 
complexes [28] or the binding of apoplasts with organic 
acid [29, 30]. It is also possible that heavy metals are 
stored in the cell vacuoles [31], metallothioneins (MTs) 
and phytochelatins (PCs) are produced like metal-bind-
ing compounds [32] and glutathione also detoxifies ROS 
[33]. The plants activated various antioxidant enzymes 
thatprotected the plants by reducing oxidative stress [34]. 

In addition to these plant defence strategies against heavy 
metals, soil microorganisms, especially bacteria play an 
important role in plant growth through the uptake of 
various nutrients and protection against various diseases 
[35]. Soil microbiota has the ability to detoxify heavy 
metals and utilise them for beneficial purposes in heavy 
metal polluted environments [36]. Ramaiah and Var-
danyan [37], in their study to evaluate the detoxification 
potential of cadmium and lead, investigated the bacteria, 
Alcaligenes faecalis, Bacillus pumilus, Pseudomonas aer-
uginosa, and Brevibacterium iodinium, which are highly 
resistant to mercury and can grow at 25 ppm or higher 
mercury concentrations, in a growth medium of 100 ppm 
and 72 ppm, respectively. They wereobserved to remove 
more than 70% of Cd and 98% of Pb within 96 h. Shah-
raki et al. [38] found that Pseudomonas fluorescens and B. 
cereus strains had the greatest effect on lead assimilation 
at 2175 and 1862 ppm, respectively. Bilal et al. [39] found 
that co- refinement of LHL10 and LHL06 promoted plant 
growth characteristics and photosynthetic activity, glu-
tathione, catalase and superoxide dismutase activities, 
and decreased lipid peroxidation by increasing macronu-
trient uptake under high temperature and drought stress. 
Gao et al. [40] found that under heavy metal stress, inoc-
ulation with immobilised bacteria significantly promoted 
the growth of alfalfa, with the dry weight of roots, stems 
and leaves increasing by 19.8%, 6.89% and 14.6%, respec-
tively. Microbes, especially bacteria, have evolved various 
mechanisms to cope with heavy metal stress in anthro-
pogenically contaminated media and promote plant 
growth [41]. Bacteria are known to have evolved a vari-
ety of mechanisms to develop resistance to heavy met-
als, including: Expulsion of metal through a permeable 
barrier, removal of metal from cells by active transport, 
intracellular physical sequestration of metal by proteins 
or other ligands to protect metal-sensitive cellular targets 
from damage, extracellular sequestration, transformation 
and detoxification [42, 43].

Spinach (Spinacia oleracea L.) is a plant food grown 
mainly in semi urban areas of the world, which are 
affected by irrigation with effluents containing heavy 
metals from the industrial sector [44, 45]. Compared to 
fruits and root vegetables, spinach has the potential to 
absorb greater amounts of heavy metals and toxic ele-
ments from the rhizosphere and convert them into edi-
ble parts [46, 47]. Our previous study has shown that 
soils contaminated with heavy metals negatively affect 
the growth of spinach due to high lipid peroxidation 
[44]. Scientists use various physicochemical and biologi-
cal approaches to attenuate the oxidative stress induced 
by heavy metals,but the use of heavy metal resistant 
bacterial strains is very rare in this field. Against this 
background, the present work aims to investigate the 
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physiological and biochemical effects of B. aerius and B. 
cereus strains on spinach grown in soils contaminated 
with heavy metals. The novelty of this work lies in the 
innovative technique of using heavy metal resistant bac-
teria to improve the indicators of oxidative stress caused 
by heavy metals in spinach (Spinacia oleracea L.). By 
utilising the unique properties of bacteria to reduce the 
negative effects of heavy metal contamination on plant 
physiology, this strategy represents a breakthrough in 
sustainable agriculture. The study not only addresses the 
environmental problems associated with heavy metal 
pollution, but also offers a promising and environmen-
tally benign strategy to increase the resilience of plants 
to the harmful effects of heavy metals. The inclusion of 
microbial interventions to mitigate stress in plants offers 
a new dimension to agricultural practises and highlights 
the potential for more environmentally conscious and 
sustainable food production.

Materials and methods
Materials and reagents
LB media (Sigma-Aldrich, Germany),  CuSO4 (Sigma-
Aldrich, Germany, > 98%),  K2SO4 (Applychem, Ger-
many, 99%),  FeSO4 (Duskan Pure chemicals, Korea, 98%), 
 H2SO4 (V.S Chem house, Thiland, 97.5%), NaOH (Sigma-
Aldrich, germany, 98%), EDTA (Applychem, Germany, 
99%), Tris–HCl (Solar Bioscience & Tech, China, 99.5%), 
Nitrobenzoic acid (BDH Labortery Supply, England, 
98%), phosphate buffer, Coomassie Brilliant Blue (Apply-
chem, Germany), Protein molecular marker (Benchmark 
Protein Ladder), Bovine serum albumin (Sigma-Aldrich, 
Germany, 98%), Nitro blue tetrazolium(Malford, UK) 
Riboflavin (Daejung Chemical, Korea, 98%)  H2O2 (VWR 
Chemical, Balgium, 30%), Guaiacol (Unichem chemi-
cal, 99%), Ascorbic acid (BDH Labortery Supply, Eng-
land, 99%), RNA standard isolation kit (NucleoSpin RNA 
plant, Germany), cDNA synthesis kit (Thermo scientific 
RevertAid First strand, USA).

Physiological parameters
Spinach (Spinacia oleracea L.) seeds (cv. Local Sindhi) 
seeds were obtained from National Agriculture Research 
Center (NARC) Islamabad, Pakistan and sterilized with 
3% (v/v) NaOCl solution. After sterilization, the seeds 
were washed with deionized water to remove the residual 
NaOCl solution [48]. The soil contaminated with heavy 
metals was collected from agricultural fields irrigated 
with contaminated water in Hayatabad Industrial Estate 
Peshawar (HIEP) and Gadoon Industrial Estate Swabi 
(GIES), Khyber Pukhtoonkhwa, Pakistan. The collected 
contaminated soil was analyzed for heavy metals using 

standard protocols [49, 50]. Bacteria were isolated from 
the soils of HIEP and GIES and identified as Bacillus 
aerius and Bacillus cereus [51]. These strains were further 
cultured in for 24 h at 37 °C in LB media. The seeds were 
biologically-primed for 10 h in LB media supplemented 
with 2% sucrose to allow the bacterial strains to adhere 
with a cell suspension of  108–109 CFU/mL.

Analysis of contaminated soil
In this experiment, soil samples were used. To purify 
soil samples, they were treated and autoclaved. Soil 
analyses were performed, including pH, texture, and EC. 
Soil organic matter was assessed using the procedures 
described in [52]. 2 g of soil was placed in a 500 mL coni-
cal flask using this procedure. The flask was then filled 
with 200  mL of distilled water, 10  mL of 1 N  k2Cr2O7, 
and 10 mL of orthophosphoric acid. 30 drops of Diphe-
nylamine (used as an indicator) were added to the mix-
ture after half an hour. The reaction came to an end when 
a green colour appeared. The soil metal analysis was car-
ried out using the method outlined by the authors of [53].

Seeds primed with bacterial strains were grown under 
greenhouse conditions in plastic pots containing 1.5  kg 
of autoclaved soil. The experiment was divided into 
nine treatments, with the control soil coming from well 
irrigated agricultural fields and the soil from contami-
nated agriculture fields irrigated with the polluted water 
from HIEP and GIES. The seeds were bio-coated with 
microbes and planted in plastic pots with uniform soil. 
Seed germination was recorded every 24  h. Plants were 
irrigated regularly as needed and harvested after 30 days 
to examine various physiological and biochemical growth 
characteristics.

Biochemical parameters
Determination of total nitrogen and protein contents
The micro-Kjeldahl method was used to determine the 
total nitrogen and protein content [54]. A total of 1 g of 
plant material was placed in digestion tube consisting 
of  CuSO4,  K2SO4 and  FeSO4 and 10 mL of concentrated 
 H2SO4 solution. The mixture solution was heated in the 
digestion unit to completely homogenise it. After diges-
tion and cooling, 20 mL of distilled water and then 10 mL 
of 50% NaOH solution were added to the mixture. To the 
mixture, 4% boric acid (50  mL) and methyl red indica-
tor were added to complete the distillation process. The 
mixture was titrated against known N  H2SO4 solution. 
The total nitrogen and protein content was determined 
according to the given formula [55].

Total Protein(
g

g
) =

Sample Volume− Blank Volume x 0.1N

Dry Weight of Sample
x 1.4007
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where; Nitrogen factor = 1.4007 and Protein factor = 6.25.

Quantification of low molecular weight polypeptides 
of metallothioneins (MTs)
The metallothionein content was determined according 
to a standard protocol using the Ellmans reagent [56]. The 
plant samples were completely crushed and homogenized 
in a buffer solution for the reduction of protein disulfide 
bonds. The mixture was centrifuged at 10,000  rpm for 
30 min to obtain MTs supernatants. The supernatants con-
taining MTs were centrifuged at 6000 rpm for 10 min after 
addition of 1 mL of chilled ethanol 80 μL of chloroform and 
stored at low temperature for 60 min. For quantification of 
MTs, the supernatant was centrifuged again at 6000  rpm 
for 10  min. The collected pellets were resuspended in 
1 mM EDTA and 100 μL 5 mM Tris–HCl at pH 7. The MTs 
mixture was stored at 25 °C for 30 min after addition of 420 
μL 0.4 mM nitrobenzoic acid (pH 8) and 0.2 M phosphate 
buffer. The MTs content was determined at a wavelength of 
412 nm wavelength using GSH as a standard solution.

The MTs proteins were extracted using protein extrac-
tion buffer previously used previous procedure [57]. 
The Bradford method was used to quantify the proteins 
before separation by SDS-PAGE using 30  g protein per 
lane according to the protocol [58]. Proteins were sepa-
rated using a mini gel electrophoresis unit (USA) on 
a 17% SDS gel at 80 V for 150 min. Coomassie Brilliant 
Blue R-250 (Sigma) was used for gel staining. Standard 
protein molecular weight markers (Benchmark Protein 
Ladder) were used to compare MTs protein subunits in 
the electrophorogram [59].

Protein and antioxidant enzyme determination
For the extraction of the proteins, 5 g of fresh leaves were 
ground in liquid nitrogen. The mixed solution was pre-
pared by adding 9  mL protein extraction buffer to the 
leaf extract. The mixture was centrifuged at 14,000 rpm 
for 15  min at 4  °C and the supernatants were collected 
to analyze the total protein content using bovine serum 
albumin (BSA) as a standard [60].

Superoxide dismutases (SOD) content was measured 
according to the protocol through [61], followed by inhi-
bition of photochemical reduction with nitroblue tetra-
zolium (NBT) [62]. A 3 mL assay mixture was prepared 
from 50  mM phosphate buffer (pH 7.8), 750  µM NBT, 
1  µM EDTA, 26  mM L-methionine, 20  µM riboflavin 
and 100 μL enzyme extract. The SOD content was deter-
mined at a wavelength of 560 nm.

Total Organic Nitrogen(
g

g
) =

Sample Volume− Blank Volume x 0.1N

Dry Weight of Sample
x 6, 25

The content of catalase (CAT) was determined according 
to the standard protocol [63] and [5]. The reaction mixture 
for CAT determination was prepared from 2.8 mL potas-
sium phosphate buffer (25  mM), 100 µL  H2O2 (30  mM) 
and 100 µL enzyme extract. CAT activity was measured 
at a wavelength of 240 nm using a spectrophotometer. The 
enzyme peroxidase (POD) was determined in the spinch 
plant according to the method [64], with a slight modifi-
cation of [65, 66]. A mixture was prepared from 100 µL 
enzyme extract, 2.7  mL potassium phosphate buffer (pH 
7.0), 0.1 mL guaiacol (1.5%) and 0.1 mL  H2O2 (0.4%). The 
POD activity was determined at 470  nm using distilled 
water as a blank. Ascorbate peroxidase (APX) activity was 
determined according to the standard protocol [67] with 
a minor modification of [68]. The reaction mixture for the 
determination of APX activity was prepared from 100 mM 
phosphate buffer (pH 7.8), 0.3 mM ascorbic acid, 0.1 mM 
Na-EDTA, 0.06  mM  H2O2 and 100 µL enzyme extract. 
APX activity was measured at a wavelength of 290 nm.

Expression of spinach ascorbate peroxidase (APX) isozymes 
genes
RNA standard isolation kit (NucleoSpin RNA plant, Ger-
many) was used to isolate RNA from soil-grown spin-
ach leaves contaminated with heavy metals. The cDNA 
synthesis kit (Thermo scientific RevertAid First strand) 
was used to synthesized cDNA using oligo (dT) primers. 
The stomatal and thylakoid ascorbate peroxidase (sAPX, 
tAPX) genes were amplified using primers in the ther-
mocycler (APPLIED BIO SYSTEMS) together with the 
positive control (actin gene RAc1 and GAPDH). PCR 
was performed under optimized standard conditions for 
amplification, e.g.at 95 °C for 5 min for pre denaturation; 
30 cycles at 95 °C for 20 Sec, at 60 °C for 30 Sec, at 72 °C 
for 40 Sec and a final extension for 12 min at 72 °C. The 
gel documentation system was run on a 1.5% agarose gel 
to visualize the PCR products.

Leaf stomata microstructural studies
The scanning electron microscope (SEM) was used for 
the microstructural examination of the stomata of the 
leaves according to the manufacturing protocol. Dried 
spinach leaves were used for the chemical fixation pro-
cess. The leaf with a size of almost 1-mm2 (n = 3) was 
attached to an aluminum rod using silver paste and 
placed in the rod holder under vacuum. The sample was 
examined in the SEM (JEOL JSM–5910, Japan) at a mag-
nification of 4000X and 5 kV.
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Statistical analysis
A one-way analysis of variance (ANOVA) and an LSD 
test (least significant difference) test were performed to 
compare the applied for comparison of treatments. A 
p ≤ 0.05 was considered statistically significant.

Results
Physiological parameters
Germination percentage
The germination behaviour of the spinach seeds differed 
significantly between the control seeds and the bacteri-
ally primed seeds (Fig.  1). The germination of spinach 
seeds from GIES and HIEP contaminated soils was signif-
icantly reduced compared to the control. However, seeds 
primed with B. aerius and B. cereus showed improved 
germination than control. Spinach seed primed with B. 
aerius and B. cereus germinated 100% in the control soil, 
while germination of seeds primed with distilled water 
was 76%. Similarly, seeds inoculated with B. aerius ger-
minated 80% and 72% in GIES and HIEP soil, respec-
tively, while seeds inoculated with B. cereus germinated 
70% and 72% in GIES and HIEP soil, respectively. Non-
inoculated seeds germinated at 30 and 40% in GIES and 
HIEP soil, respectively (Fig. 1).

Plant growth
The presence of heavy metals in the soil significantly 
reduced the seedling length of spinach (Fig. 2). The spin-
ach grown in the control group has a root and shoot 
length of 4.33 and 6.06  cm/plant respectively. The root 
and shoot length of spinach plants grown in GIES and 
HIEP contaminated soil were 3.1 and 4.1 cm and 3.5 and 
5.03 cm, respectively (Fig. 2). The root and shoot length 

of spinach plants grown in control soil inoculated with 
B. aerius and B. cereus were 5.2 and 6.7 cm, respectively. 
The root and shoot length of spinach plants grown in 
GIES-contaminated soil and inoculated with B. aerius 
were 4.1 and 5.6  cm, respectively, while the root/shoot 
length of plants inoculated with B. cereus were 4.03 and 
5.6  cm, respectively. Similarly, the root/shoot length of 
plants grown with HIEP soil and inoculated with B. aer-
ius were 3.9 and 5.7 cm, respectively while the root/shoot 
length of plants inoculated with B. cereus were 4.03 and 
5.8 cm, respectively (Fig. 2).

The fresh weight of roots and shoots was also signifi-
cantly altered in spinach plants grown on GIES and HIEP 
contaminated soils (Fig.  3A and B). The fresh weight of 
root/shoot of spinach plants grown in control soil was 
0.47 and 0.61 g/plant, respectively, while the fresh weight 
of root/shoot of spinach plants grown in GIES- and HIEP-
contaminated soil decreased to 0.30 and 0.44 g/plant and 
0.3 and 0.46  g/plant, respectively (Fig.  3A and B). How-
ever, the fresh weight of spinach plants inoculated with 
bacterial strains was significantly higher than that of 
plants in contaminated soil. Plants grown in GIES con-
taminated soil and inoculated with B. aerius had a signifi-
cantly higher root/shoot fresh weight of 0.35 and 0.56 g/
plant, respectively, while the root/shoot fresh weight of 
plants inoculated with B. cereus was 0.44 and 0.49 g/plant, 
respectively. In HIEP soil, the fresh weight of spinach 
roots and shoots was 0.37 and 0.46 g/plant when inocu-
lated with B. aerius and 0.30 and 0.52 g/plant when inocu-
lated with B. cereus (Fig. 3).

Root and shoot dry weights of spinach plants grown in 
controlled, GIES and HIEP contaminated soil were reported 
as 0.05, 0.053, 0.02, 0.04, 0.03, and 0.04 g/plant, respectively 

Fig.1 Effects of Bacillus aerius (a) and Bacillus cereus (b) on germination (%) of spinach grown in soils contaminated with heavy metals in Gadoon 
Industrial estate (GIES) and Hayatabad Industrial Estate (HIEP)
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(Fig. 4). The root/shoot dry weight of spinach plants inoc-
ulated with B. aerius in GIES contaminated soil was 0.042 
and 0.05 g/plant while the root/shoot dry weight of plants 
inoculated with B. cereus was 0.04 and 0.05  g/plant. The 
root/shoot dry weight of plants inoculated with B. aerius in 
HIEP-contaminated soils was 0.037 and 0.05 g, respectively, 
while the root/shoot dry weight of plants inoculated with B. 
cereus was 0.33 and 0.53 g/plant, respectively (Fig. 4).

Biochemical parameters
Determination of total nitrogen and protein contents 
in spinach
In GIESand HIEP polluted soils, spinach plants grew 
with a nitrogen and protein content of 4.4, 27.57  µg/g 
and 3.01, 18.82  µg/g, respectively (Fig.  5). Higher total 
nitrogen and protein contents were analyzed in spinach 
plants inoculated with bacterial strains. Total nitrogen 

Fig. 2 Effect of Bacillus aerius (a) and Bacillus cereus (b) on shoot (A) and root (B) length (cm/plant) of spinach growing in heavy metal contaminated 
soils of Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)

Fig. 3 Effect of Bacillus aerius (a) and Bacillus cereus (b) on the fresh weight of roots (A) and shoots (B) of spinach growing in soils contaminated 
with heavy metals in the Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)
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and protein levels were 5.5 and 4.8  µg/g and 34.57 and  
30.20  µg/g in spinach inoculated with B. aerius and  
B. cereus strains, respectively. Similarly, total nitrogen 
and protein levels in HIEP soil were 4.06, 25.38  µg/g 
when inoculated with B. aerius and 4.69, 29.32 µg/g when 
inoculated with B. cereus (Fig. 5).

Mathalothionins (MTs) concentration
MTs concentrations were higher in spinach plants 
grown in GIES and HIES contaminated soil. The results 
showed that MTs concentrations were 0.094, 0.10 and 

0.05 µmol in plants grown in GIES, HIEP contaminated 
soil and control soil, respectively. However, the amount 
of MTs was lower in spinach plants grown from seeds 
primed with bacterial strains in GIES and HIEP con-
taminated soil. The MTs concentrations were 0.083 and 
0.053  µmol in spinach plants inoculated with B. aerius 
in GIES and HIEP soil, respectively. Similarly, spinach 
plants inoculated with B. cereus in GIES and HIEP soil 
had 0.05 and 0.06  µmol MTs concentrations (Fig.  6A). 
SDS-PAGE electropherograms were used to visualize low 
molecular weight MTs, which showed 5–17 KDa distinct 

Fig. 4 Effect of Bacillus aerius (a) and Bacillus cereus (b) on the dry weight of roots (A) and shoots (B) dry weight (g/plant) of spinach grown in soil 
contaminated with heavy metals in the Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)

Fig. 5 Effect of Bacillus aerius (a) and Bacillus cereus (b) on total nitrogen (A) and protein contents (B) (µg/g) content of spinach grown in heavy 
metal contaminated soils of Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)
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polypeptide bands on the gel (Fig. 6B). Plants grown on 
GIES and HIEP contaminated soil showed increased 
band density, while plants inoculated with microbes did 
not show responsible polypeptides on the gel.

Antioxidative enzymes activities
The activity of antioxidant enzymes was higher in spin-
ach plants in GIES and HIEP contaminated soil (Fig. 7). 
The SOD concentrations were 152.59 and 212.05  µg/g 
FW in the GIES and HIEP plants, respectively, while they 
were 99.65 µg/g FW in the control plants. The activities 
of POD, CAT and APX were also 50.06, 2.81, 8.0 µg/g FW 
and 65.50, 0.53, 0.90 µg/g FW in spinach plants grown on 
GIES and HIEPcontaminated soils, respectively. A spin-
ach plant grown on control soils had POD, CAT and APX 
activities of 2.26, 0.50 and 3.66  µg/g FW, respectively. 
Plants grown from seeds inoculated with B. aerius show 
a significant decrease in antioxidant enzyme activities in 
GIES and HIEP soils, i.e. SOD (162.01, 161.98 µg/g FW), 
POD (49.26, 48.90 µg/g FW), CAT (2.05, 2.03 mM/g FW) 
and APX (6.01, 5.83  mM/g FW) respectively. The same 
trends in antioxidant enzyme activities were observed 
when B. cereus bacteria were inoculated into GIES and 
HIEP soil spinach plants (Fig. 7).

Ascorbate peroxidases (APX) gene expression in stomata 
and thylakoids
In spinach Spinach plants grown on GIES and HIEP 
soils, the expression of stroma and thylakoid ascorbate 

peroxidase genes did not change compared to the con-
trol. Both ascorbate peroxidase isozymes showed the 
same expression in spinach leaves after gene specific PCR 
in all treatments (Fig. 8).

Ultramorpological changes in stomata
The abaxial surface of plant leaves grown on GIES, HIEP 
and control soils was used to examine the stomata with a 
scanning electron microscope. It was found that the sto-
mata aperture was close and small in spinach leaves grown 
on GIES and HIEP contaminated soils In contrast, the sto-
mata of plants grown on B. cereus and B. aerius inoculated 
GIES and HIEP soils were open stomatal aperture (Fig. 9).

Discussion
Plants confronted with heavy metal toxicity have survival, 
growth and metabolic problems [69]. Plants use numerous 
techniques to reduce the toxicity of heavy metals or to mini-
mize their entry into plants [70, 71]. However, the use of 
resistant bacterial strains against heavy metals is an attrac-
tive technique as it is nature-friendly, economical and easy 
to apply [72–76]. In the current study, the physiological and 
biochemical properties of spinach grown in heavy metal 
contaminated soils were determined using B. aerius and B. 
cereus bacterial strains isolated from heavy metal contami-
nated soils. In vegetable crops, the most common problems 
of heavy metal toxicity are low germination rate, slow early 
growth, reduction in plant biomass, poor metabolism and 
structural changes in stomata [2, 44, 77, 78]. GIES and HIEP 

Fig. 6 A, B Effect of Bacillus aerius (a) and Bacillus cereus (b) on the metallothionein (MTs) of spinach growing in the heavy metal contaminated soils 
of Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)
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plants contaminated with industrial pollutants showed low 
germination rate (%) and low fresh seedling biomass (Figs. 1, 
2 A, B, 3 A, B, 4 A, B). The literature shows that crops con-
taminated with heavy metals have reduced seed germina-
tion and biomass [2, 79, 80]. The reduction in germination 
and plant biomass may be due to low water potential, poor 
nutrient uptake, production of ROS, irregular arrangement 
of microtubules and suppression of the cell elongation pro-
cess [81, 82]. The interaction between plants and microbes 
promotes plant growth and increases tolerance to soils 

contaminated with heavy metals [83]. Our results showed 
that plants grown from seeds inoculated with B. aerius 
and B. cereus grew better in soils contaminated with heavy 
metals than in control, GIES and HIEP soils. This could be 
due to the unavailability of metals to the plant due to vari-
ous adaptive strategies of the bacteria, including adsorp-
tion or absorption of toxic metals, detoxification of metals, 
and protection from metal contaminated environment [84]. 
According to [72], the association of plant and bacterium 
(Methylobacterium oryzae) reduces the uptake of Cd and 

Fig. 7 Effect of Bacillus aerius (a) and Bacillus cereus (b) on antioxidant metabolism (MTs) of spinach grown in soils contaminated with heavy metals 
in Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)

Fig. 8 Effects of Bacillus aerius (a) and Bacillus cereus (b) on the expression of isoenzymes of chloroplastic ascorbate peroxidase grown in soil 
contaminated with heavy metals in Gadoon Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP) C: Control; G: Gadoon Industrial Estate; H: 
Hayatabad Industrial Estate; M: bacterial strain
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Ni into plant roots and thus promotes plant growth in heavy 
metal contaminated soils. The results of the current study 
were also confirmed by other scientists who used different 
bacterial strains to improve plant growth under unfavorable 
environmental conditions [73, 85, 86].

Spinach grown in soil contaminated with heavy met-
als has lower nitrogen and protein content (Fig.  5A 
and B). Metal-stressed plants have low protein and 
nitrogen contents, possibly due to a slowdown in pro-
tein synthesis, nitrogen metabolism and upregulation 
of protease activity [87, 88]. Spinach seeds inoculated 
with B. aerius and B. cereus showed higher total nitro-
gen and protein content. Bacterial strains could reduce 
the mobility of toxic metals in the soil or block the 
entry channels of metals into the root system of plants, 
thereby protecting the important metabolic orga-
nelles from the negative effects of metal stress. Plant 
root bacteria have the potential to improve the meta-
bolic activities of plants in a polluted environment by 
reducing abiotic stress [89]. These halophilic bacteria 
increased nitrogen and protein content by providing 
various nutrients, producing phytohormones, solubi-
lizing of beneficial ions and regulating ACC deaminase 
activity [86, 90].

The production of MTs in plants against abiotic stress is 
a well-known phenomenon [78]. High MTs contents were 
observed in industrial contaminated soil grown plants 
compared to control (Fig.  6A and B).The current results 
and previous findings show that MTs production correlates 
with metal stress in plants [91]. SDS-PAGE profiling also 
confirmed these results by showing high intensity polypep-
tide bands between 5–18 KDa. Abdelmigid et al. [92] also 
demonstrated that 7–17 KDa polypeptide MTs bands were 
expressed in Brassica under Cd induced stress. Reduced 
MTs expression was observed in spinach seedlings grown 
in polluted soil from seeds treated with two bacterial 
strains. This low level of MTs in the plants also suggests 
that the two bacterial strains help in the removal of heavy 
metal stress. Secondly, B. aerius and B. cereus can also pre-
vent the transport of toxic metals to the plant organs [44].

Reactive oxygen species are produced in stressed 
plants [93]. Under stress conditions, the immune sys-
tem of plants activates antioxidant enzymes to scavenge 
ROS [94, 95]. ROS production is increased in plants in 
a medium contaminated with heavy metals, which is in 
proportion to the production of antioxidants [96]. Cur-
rent research confirms that spinach plants activate anti-
oxidant enzymes against the heavy metals present in the 

Fig. 9 Effect of Bacillus aerius (a) and Bacillus cereus (b) on stomatal aperture of spinach grown in soils contaminated with heavy metals in Gadoon 
Industrial Estate (GIES) and Hayatabad Industrial Estate (HIEP)
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soil to cope with the stress conditions. In contrast, plants 
grown in contaminated soils inoculated with B. aerius and 
B. cereus bacterial strains showed lower levels of antioxi-
dant enzymes (Fig. 7). The addition of heavy metals to soil 
causes plant toxicity, but the presence of soil bacteria mit-
igates the negative effects of heavy metals on plant growth 
[97, 98]. In polluted ecosystems, microbes improve plant 
growth by reducing the toxicity of metals through vari-
ous mechanisms such as immobilization, complexation, 
alkalinization, transformation, precipitation, or chelation 
of toxic metals [74, 99]. All these mechanisms reduce or 
slow down the production of ROS in plants because they 
block the plant root channels for the entry of heavy met-
als [99]. The expression profile of tAPX and sAPX showed 
the same expression in plants grown on soil contaminated 
with heavy metals (Fig. 8). According to [100], pre-mRNA 
splicing in the chloroplast of spinach. These isoenzymes 
(genes) are constitutively expressed to protect the plant 
from ROS stimulated photo-oxidative stress [101].

Stomata closing mechanisms allow plants to prevent 
the transpiration process, as heavy metals prevent water 
uptake by plant roots [102–105]. The stomata activity of 
the spinach plant is significantly impaired by heavy met-
als in polluted soils (Fig. 9). Heavy metal induced toxicity 
affected the shape and size of stomata in plants grown in 
soil polluted with industrial areas compared to bacterially 
primed plants (Fig.  9). Similar results were observed by 
[106], they reported the closure of stomata in Helianthus 
annulus when treated with effluents from the tannery 
industry. Heavy metal stress inhibits the water supply 
to the stomata and thus reduces the size of the stomata 
aperture [106, 107]. Moreover, the stomata were open in 
the plant leaves inoculated with microbes, indicating a 
protective role in reducing the toxicity of heavy metals. 
The microbes stop the movement of heavy metals to the 
plant organs and mitigating the stress effect on the open-
ing and closing of the stomata aperture [44].

Conclusions
The conclusion is that heavy metals significantly impair 
plant growth by inducing oxidative stress in the spin-
ach plant. However, B. aerius and B. cereus improved 
the physiological and biochemical parameters of plants 
grown in soils contaminated with heavy metals by reduc-
ing soil toxicity caused by the deposition of heavy metals 
and normalizing oxidative stress by reducing the synthe-
sis of ROS. In addition, plants inoculated with both bac-
terial strains had greater stomata aperture as compared 
to untreated plants. It can be concluded that the bacterial 
strains improved plant growth by increasing the rate of 
photosynthesis and reducing the uptake of heavy metals 
from the polluted soil.
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