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Abstract

Background: Senescence is a key developmental process occurring during the life cycle of plants that can be
induced also by environmental conditions, such as starvation and/or darkness. During senescence, strict control
of genes regulates ordered degradation and dismantling events, the most remarkable of which are genetically
programmed cell death (PCD) and, in most cases, an upregulation of flavonoid biosynthesis in the presence of light.
Flavonoids are secondary metabolites that play multiple essential roles in development, reproduction and
defence of plants, partly due to their well-known antioxidant properties, which could affect also the same cell
death machinery. To understand further the effect of endogenously-produced flavonoids and their interplay
with different environment (light or dark) conditions, two portions (red and green) of a senescing grapevine
callus were used to obtain suspension cell cultures. Red Suspension cell Cultures (RSC) and Green Suspension
cell Cultures (GSC) were finally grown under either dark or light conditions for 6 days.

Results: Darkness enhanced cell death (mainly necrosis) in suspension cell culture, when compared to those
grown under light condition. Furthermore, RSC with high flavonoid content showed a higher viability compared to
GSC and were more protected toward PCD, in accordance to their high content in flavonoids, which might quench
ROS, thus limiting the relative signalling cascade. Conversely, PCD was mainly occurring in GSC and further
increased by light, as it was shown by cytochrome c release and TUNEL assays.

Conclusions: Endogenous flavonoids were shown to be good candidates for exploiting an efficient protection
against oxidative stress and PCD induction. Light seemed to be an important environmental factor able to
induce PCD, especially in GSC, which lacking of flavonoids were not capable of preventing oxidative damage
and signalling leading to senescence.
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Background
Plant senescence is a multifactorial process involving
several signalling pathways, which require an active
regulation by nuclear genes. The presence of redun-
dant processes confers resilience, which is ensured by
the activation of a vicarious pathway when the main
process fails to reach completion. In addition, the sim-
ultaneous presence of parallel pathways allows modu-
lating and strengthening senescence induction. Three

main senescence inducers have been recognized, such
as carbon starvation, darkness and developmental
process [1]. Starvation and darkness substantially con-
sist in cell sugar depletion, while development is a
process more finely regulated by gene activation. Dark
treatment, if applied in detached leaves, would not be
considered the most appropriate experimental model
to mimic the natural process. Hence, other stress
phenomena, such as water stress on individual leaves,
overlap to the cascade of events leading to cell death
[2]. In the case of grape cell cultures, here presented,
it is possible to study the effect of darkness avoiding
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the overlapping of the other stress phenomena men-
tioned above.
Several hundred genes are expressed during leaf

senescence in Arabidopsis, some of which are related to
flavonoid biosynthesis [3]. On the other hand, those
related to flavonoid synthesis could be differentially
regulated, depending on the type of senescence, since
in cell cultures the developmental- and starvation-
induced senescence differs from that induced by dark-
ness [1].
According to this scheme, the hormonal elicitation of

plant senescence is specific. Developmental senescence
implies the participation of ethylene, methyl jasmonate
and salicylate, while the latter is not involved in dark-
ness- and starvation-induced senescence [1]. In particu-
lar, by modulating genes, hormones play a crucial role,
similarly to what has been found in programmed cell
death (PCD) [4]. In this case, the involvement of many
signalling molecules and a large interplay network have
been described.
In Arabidopsis suspension cell cultures, heat-induced

cell death and senescence share many similar features of
PCD [5], whose involvement has already been described
in processes such as hypersensitive reaction (HR), aeren-
chyma differentiation under hypoxic conditions and
xylem differentiation [6]. PCD exhibits peculiar charac-
teristics (i.e. DNA laddering and vacuole fragmentation)
that are also found in the late phase of senescence [1].
Flavonoids are widespread secondary metabolites in

plants. The most abundant classes are the flavan-3-ols,
anthocyanins and flavonols, whereas the most common
class of phenolic non-flavonoid antioxidants includes the
hydroxycinnamates [7]. Their composition and quality
depend on plant growth conditions, geographic location
and cultivars.
Anthocyanins and colourless flavonoids are mainly

localized in different specialized sub-cellular compart-
ments, such as vacuole and cell wall, where they can
reach a higher concentration when compared to the
animal counterparts. It is therefore interesting to verify
whether their effect might be pro-apoptotic, as it gener-
ally occurs in animal cells [8], or anti-apoptotic. Antho-
cyanin accumulation in pigmented cells can prevent
developmental- or oxidative stress-mediated PCD-like
death, as seen in lace plant (Aponogeton madagascar-
iensis) and Arabidopsis cell lines, respectively [9–11].
Pigmented cells, in comparison to non-pigmented ones,
are more protected by flavonoids against the oxidative
stress [12]. This suggests that these metabolites possess
an anti-apoptotic effect, related to a decrease in reactive
oxygen species (ROS) production and propagation. Hence,
the anti-apoptotic mechanism proposed for flavonoids in
plants could be generally rationalised as an anti-oxidant
activity. This effect could also explain the delay of ripening

and senescence, reported in anthocyanin-enriched var-
ieties of tomatoes [13].
Anthocyanins and colourless flavonoids also perform a

key role in human health, acting as antioxidants by pre-
venting some ROS-associated diseases, such as cancer
[14, 15], or acting as tumour-inhibiting natural mole-
cules in cancer cell lines [16–19].
Grapevine (Vitis vinifera L.) is a widespread cultivated

plant rich in polyphenols (mainly flavonoids and stil-
benes), which are present in most tissues. They are syn-
thesized and accumulated during the plant cycle and play
several roles in response to biotic and abiotic stress.
Grapevine flavonoids, including anthocyanins, are
powerful antioxidants, protecting leaves and berries
against UV photo-oxidative damage, but could also act
as seed dispersers or pollinator recruiters [20, 21]. In
grapevine cell cultures, treatment with cellulase elicits
HR-like responses, causing localised cell death, brown-
ing and inducing phenolic metabolism [22]. In accord-
ance, Repka and co-authors showed that the HR,
elicited by methyl jasmonate in grapevine, induces the
activation of genes related to defence, PCD and phenyl-
propanoid biosynthesis [23, 24]. Nevertheless, in all
these studies on plant elicitor- or apoptosis activator-
induction of PCD, it is difficult to distinguish whether
flavonoid accumulation in the cell is among the conse-
quences of HR, or the main cause of cell death through
induction of a pro-apoptotic effect.
In the present work, starving solid grapevine cell cul-

tures grown under light were obtained by extending their
growth largely beyond their proliferation rate plateau. This
growth condition induced a pigmented flavonoid produc-
tion on the outer layers of the cell aggregates, whereas the
inner ones, close to nutrients of the medium and pro-
tected from an excess of light, remain green and not
pigmented. Red and green cells were obtained from this
different material and separately sub-cultured in liquid
medium under different light regimes (light vs. darkness).
These suspension cell cultures represent a simple model-
system to study the role of endogenous flavonoids in
senescence and PCD, avoiding multi-factorial interactions
between flavonoid biosynthesis induction and senescence
modulation (i.e. osmotic stress, hormonal concentration,
nutrient availability, ROS or oxidative stressors). There-
fore, this paper focuses on the main effects exerted by
dark and light conditions on grapevine senescing suspen-
sion cell cultures. In addition, endogenous flavonoids were
considered with respect to the role they could play in sen-
escence and/or PCD.

Methods
Plant material and cell cultures on solid medium
Long-term callus cultures of grapevine (Vitis vinifera
L., cv. Limberger), established from young leaf tissues,
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were kindly supplied by V. Repka, Research Institute of
Viticulture and Enology, Bratislava, Slovakia. The calli
were then maintained on solid media under light, ac-
cording to Repka et al. [25], with minor modifications.
Their maintenance was obtained by sub-culturing them
every 14 days for several cycles. For the experiments in
suspension cell cultures, this period was extended to
23 days, 1 week longer than the usual growing cycle. At
this stage, cells had reached a stationary phase of
growth, underwent nutrient starvation and, therefore,
had triggered the pathway leading to senescence. The
pigmented red cells from 23-day-old cultures, localised
on the external cell layers, were selected as a starting
inoculum for obtaining Red Suspension cell Cultures
(RSC). Similarly, the lightly-green cells in the under-
neath layers were chosen for obtaining Green Suspen-
sion cell Cultures (GSC). RSC and GSC were used for
experiments after 3 and 6 days after subculture, in the
presence of either darkness or light, respectively.
At day 0, both GSC and RSC were also analysed for

the content of soluble hexoses (glucose and fructose,
respectively) and for total protein concentration, as gen-
eral hallmarks of the senescence programme [26, 27].
Aliquots of 100 ± 20 mg FW from 3 independent calli
were ground into frozen powder under liquid nitrogen.
For protein analysis, the powder was resuspended in
0.5 ml of 50 mM Tris-HCl (pH 7.5) and protein measured
by Bradford method [28] and expressed as mg g−1 FW.
For sugar analysis, the powder was suspended in 1 ml of

50 mM Tris-HCl, 0.05 % Triton X-100, boiled at 100 °C
for 5 min and centrifuged by a Mikro 120 Hettich
centrifuge. The supernatant was used for the standard
enzymatic assay of glucose and fructose, measured by a
Perkin-Elmer fluorimeter at the wavelengths of 329 and
460 nm for excitation and emission, respectively [29].
Hexose content was expressed as μmol g−1 FW.

Suspension cell cultures
For all experiments, 4 g (fresh weight, FW) of either
GSC or RSC were transferred into 120 ml of fresh liquid
medium contained in 250 cm3 Erlenmeyer flask. The
flasks were maintained in an INNOVA 2300 platform
shaker, rotating at 110 rpm and kept at 27 ± 1 °C. Finally,
GSC and RSC were grown for 6 days either under light
(12 h light period) or in dark conditions, respectively.

Determination of growth rate
Aiming at estimating the growth rate of cell cultures
grown on solid medium, 3 g FW of callus pieces was
initially transferred to a fresh solid medium. Calli were
picked up and re-weighed after 3, 6, 9, 12, 15, 18, 21 and
23 days of proliferation.

Extraction of flavonoids
Grapevine GSC and RSC were grown under light condi-
tions, harvested at day 0 and 6, frozen in liquid nitrogen
and ground to a fine powder. Then, 0.5 g (FW) of frozen
powder was incubated overnight with 1 ml of 15 % (v/v)
HCl in methanol to extract flavonoids. The alcoholic -
extracts (suspensions) were then centrifuged 10 min at
12,000 g in a Mikro 120 Hettich centrifuge. The superna-
tants were recovered, dried under N2 flow and finally
dissolved in 200 μl of mobile phase (85 % methanol and
15 % bidistilled water).

RP-HPLC analysis of flavonoids
HPLC separation and quantification were performed
with 0.5 % (v/v) acetic acid, pH 2.5 (eluent A) and
methanol (eluent B) at a flow rate of 0.5 ml min−1. RP-
HPLC was performed on a Zorbax Eclipse extra dense
bonding-C18 column (5 μm, 4.6 × 150 mm, Agilent
1200 series Instrument), equipped with a binary pump
delivery system, coupled to a DAD. The binary gradient
conditions were: 27–44.5 % B (32 min), then 44.5–
67.5 % B (13 min), 67.5–100 % B (2 min), isocratic
100 % B (3 min). Anthocyanins were monitored at
520 nm and identified by comparison of their chroma-
tographic profile with the commercial standard malvi-
din 3-O-glucoside (Extrasynthese, Lyon France).

Mass spectrometry of alcoholic extracts
Aiming at identifying the main polyphenolic com-
pounds shown by HPLC analysis, alcoholic extracts
were obtained as described above from GSC and RSC
grown under light for 6 days, and then used for mass
spectrometry characterization. Multi-stage Mass Spectrom-
etry (MSn) experiments and liquid chromatography -
electrospray ionization - mass spectrometry (LC-ESI-MS)
analyses were achieved by a Finnigan LXQ Linear Ion Trap,
operating in the negative ion mode, coupled with a Dionex
UltiMate 3000 RS Pump and equipped with a Dionex
UltiMate RS 3000 Autosampler (Thermo Scientific,
San Jose, CA, USA). Methanolic standard solutions
(200 μg ml−1) of gallic acid, quercetin glucoside, quer-
cetin, malvidin-glucoside and kaempferol were infused
into the ion source at a flow rate of 10 μl min−1, with
the aid of a syringe pump, in order to obtain the corre-
sponding MSn spectra (see Supplementary material).
Only in the case of cyanidin-glucoside, the identification
was performed using data retrieved from an in silico library
(http://www.massbank.jp/jsp/Dispatcher.jsp?type=disp&id=
PR020036&site=1).
The typical source conditions were: transfer line

capillary at 275 °C, ion spray voltage at 4.70 kV, sheath,
auxiliary and sweep gas (N2) flow rates at 20, 5 and 0
arbitrary units, respectively. Helium was used as the
collision damping gas in the ion trap, set at a pressure of
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1 mTorr. ESI-MSn spectra were obtained by collision
induced dissociation (CID) experiments, after isolation
of the appropriate precursor ion in the ion trap (isola-
tion width 1.2m/z unit), and subjecting them to the
following typical conditions: normalized collision energy
between 20 and 30 %, selected to preserve a signal of the
precursor ion in the order of 5 %; activation Q 0.25 and
activation time 30 ms. The HPLC separations were
performed on a Synergi 4 μm Hydro-RP 80A column
(250 mm × 2.0 mm) from Phenomenex (Bologna, Italy).
The mobile phase consisted of 0.2 % (v/v) formic acid in
water (eluent A) and 0.2 % (v/v) formic acid in methanol
(eluent B), and the linear gradient elution conditions
were as follows: 27–44.5 % B (32 min), 44.5–67.5 % B
(13 min), 67.5–100 % B (2 min), 100 % B isocratic
(19 min), 100-27 % B (3 min), 27 % B isocratic (6 min)
at a constant flow rate of 0.1 ml min−1 at 30 °C.

Determination of dead cells
GSC and RSC were incubated with a solution containing
fluorescein diacetate (FDA) to determine cell viability.
The FDA working solution was prepared as described by
McCabe and Leaver [30]. Cytochemically-stained cells
were observed under a LEICA Fluovert fluorescence
microscope, using a Nageotte chamber, counting at least
100 aggregate-free cells. The percentage of dead cells
was calculated by considering the ratio between the
FDA-unstained and the total number of cells.

Reactive oxygen species (ROS) determination
The generation of ROS was monitored according to the
methods of Ledoux et al. and Santos et al. [31, 32], using
2′, 7′-dichlorodihydrofluorescein diacetate (H2DCFDA)
as a probe. Samples of suspension cell cultures (2 ml), at
day 0, were incubated in 24-well cell culture cluster with
5 μM H2DCFDA. The detection was performed for
105 min using Multilabel Counter (WALLAC, model
1420, Perkin-Elmer) with 5 min-intervals readings, using
excitation at 485 ± 10 nm and emission at 535 ± 10 nm.
GSC and RSC were also incubated with 1 mM 2,2-azo-
bis(2-methylpropionamide)hydrochloride (ABAP) as free
radical initiator. The extent of cell death was evaluated
at the beginning and at the end of the assay.

Determination of cellular ATP
GSC and RSC (approx. 10 g FW), at different sampling
days (0, 3 and 6), were first filtered by nylon gauze
(100 μm mesh), then frozen with liquid nitrogen and
finally ground to a fine powder. Samples (100 ± 20 mg
FW) were re-suspended in 1 ml of 50 mM Tris–HCl
(pH 7.5) and 0.05 % (w/v) Triton X-100, and immedi-
ately boiled for 2 min. After centrifugation (10 min at
12,000 g in a Mikro 120 Hettich centrifuge), aliquots of
supernatant were used for luminometric assay, as

described by Petrussa et al. [29]. ATP calibration curve
was performed for each experiment and the sample
concentrations were then calculated by interpolation.
Apoptotic or necrotic samples at day 0 were prepared as
a control by incubating either in ethanol 10 % (v/v) for
24 h or at 80 °C for 10 min, respectively.

Detection of cytochrome c release
Approximately 4 g FW of GSC or RSC, grown under
either light or dark conditions for 6 days, was used for the
cytosolic extracts. The material was homogenised with
4 ml of homogenisation buffer (20 mM HEPES-Tris,
pH 7.6; 0.3 M sucrose; 1 mM EDTA; 5 mM DTE; 2 mM
PMSF; 1 mM benzamidine and 0.6 % (w/v) PVPP), filtered
through a nylon gauze (100 μm mesh) and then centri-
fuged at 1000 g for 10 min at 4 °C by Mikro 120 Hettich
centrifuge, to eliminate debris. The supernatant was
centrifuged again at 15,000 g for 20 min. The obtained
supernatant was further ultracentrifuged at 100,000 g
for 40 min by a Beckman L7-55 centrifuge (Ty 70ti
rotor) to obtain the final soluble fraction. Soluble pro-
teins were concentrated by 5000 MWCO concentrators
VIVASPIN 4 (Sartorius, Göettingen, Germany) at 10,000 g
for 30 min (Mikro 120 Hettich centrifuge). Soluble pro-
teins (ca. 30–40 μg) were separated by 15 % (w/v) SDS-
PAGE and electroblotted onto a nitrocellulose membrane.
The blots were incubated at 4 °C overnight with 200 μl of
a polyclonal anti-cytochrome c Ab (Agrisera), at 1/1000
dilution. The cross-reaction was finally detected by
nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl
phosphate colour development, after incubation with
alkaline phosphatase-conjugated anti-rabbit IgG anti-
body (1/2500 dilution; Sigma, St. Louis, MO, USA).
Computer-assisted densitometric analysis of immuno-
blots was quantified using Quantity One software
(Bio-Rad, Hercules, USA).

In situ detection of DNA fragmentation (TUNEL assay)
Samples of GSC and RSC (1 ml suspension) were
collected at day 0 and 6 and washed three times in
phosphate buffered saline (PBS), incubated with fixation
solution of 2 % (v/v) paraformaldehyde in PBS for
60 min. Then, samples were treated with permeabilisation
solution (0.1 % (w/v) Triton X-100 in 0.1 % (w/v) sodium
citrate) and washed three times with PBS. Samples were
labelled with TUNEL reaction mixture (TMR-red in situ
cell death detection kit, Roche Diagnostics) in darkness at
37 °C for 60 min. Negative (without terminal transferase)
and positive (with ethanol treatment at day 0, as described
by Hogg et al. [33]) samples were properly included. For
nuclear staining, the samples were washed twice by PBS
and stained with 1 μg ml−1 4′,6-diamidino-2-phenylindole
(DAPI) for 15 min. Finally, all samples were examined
under a Leitz Fluovert fluorescence microscope, with two
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sets of filters: 360 nm excitation and 420 nm emission for
DAPI detection; 540 nm excitation and 620 nm emission
for TUNEL, respectively. The percentage of apoptotic
TUNEL-positive nuclei was determined by counting at
least 200 nuclei.

Statistical data analysis
Treatment group means were compared by LSD (Least
Significant Difference), according to Fisher’s statistical
test, and different letters, assigned to means, designate a
statistical difference at P ≤ 0.05. Since cell death and
TUNEL positive cells were evaluated as percentage on
the total amount of cells, the statistical treatment was
performed on such data after their transformation by the
formula arcsen (x1/2). A t-test was applied for compari-
son of protein and sugar content among GSC and RSC
calli at day 0.

Results
Production of suspension cell cultures from V. vinifera
(cv. Limberger) and characterization of their flavonoid
profile
Grapevine cell cultures were grown under light on a
solid medium. After 14 days, these cells reached the
optimal growth phase for sub-culturing on solid
medium. The growth exhibited a sigmoidal trend that
reached a steady-state from 21 to 23 days (Additional
file 1: Figure S1). At this stage, accumulation of red
pigments on the surface of calli was detected (result
not shown). Therefore, red (pigmented) and green
(non-pigmented) clusters from the same callus piece
were chosen as inoculum for the subculture into liquid
medium in order to study the effects of endogenous
flavonoid at the onset of senescence. As specified in
the Methods section, cell types were obtained from the
same callus piece and differed by their relative position
(internal/green or external/red). Moreover, green and red
cells did not significantly differed in their glucose and
fructose concentration (Additional file 2: Table S1),
suggesting that both cell types were subjected to a similar
degree of senescence induction by hexose signalling. The
difference in total protein content, as hallmark of cell
degradation, was statistically significant among the cell
types (p = 0.01). However, the decrease in protein was
noticeable in red cells, which showed to be even more
protected from PCD than green ones, during subsequent
transfer in liquid culture.
The two suspension cell cultures (GSC and RSC) were

then maintained in a liquid medium for 6 days under
light or darkness. Since the treatments lasted just 6 days,
it was considered that after this period dark- and light-
treated cell cultures did not substantially differ for their
flavonoid content. For this reason, only in light-grown
RSC and GSC, anthocyanin content and composition

were analysed by RP-HPLC (Fig. 1, Panel a). The chro-
matograms show that Limberger cells accumulated
mainly cyanidin and malvidin glucosides, as well as their
coumaroyl derivatives. In particular, anthocyanin content
in GSC was low, with a similar pattern at day 0 (data
not shown) and 6 (Panel a, dashed line), respectively,
demonstrating that light treatment did not change their
flavonoid concentration or composition after 6 days.
Conversely, RSC showed an appreciable amount of
anthocyanins after 6 days (Panel a, solid line), when
compared to GSC. To characterize further the different
classes of flavonoids accumulated in both suspension cell
cultures at day 6, mass spectrometry (MS) analysis was
also performed in alcoholic extracts (Additional file 3:
Figure S2). The HPLC chromatograms revealed that,
besides to anthocyanins, RSC mainly accumulated gallic

Fig. 1 RP-HPLC analysis of anthocyanins (a) and polyphenolic profile
(b) from alcoholic extracts obtained by V. vinifera (cv. Limberger)
suspension cell cultures. GSC (dotted line) and RSC (solid line) were
grown under light conditions for 6 days. Their metabolite content
was determined at day 6. Chromatographic profiles of anthocyanidin
glucosides, cyanidin and malvidin, as well as their respective substituted
derivatives, are presented. Malvidin glucoside (dashed line) was used as
a standard (Panel a). The identification was obtained by mass spectrometry
analysis on chromatographic peaks detected at 520 nm. Similar
analysis was performed at 320 nm (Panel b) and the retrieved
flavonoids were identified as follows: 1) gallic acid; 2) quercetin-
diglucoside; 3) quercetin-glucoside; 4) quercetin-glucuronide methyl
ester; 5) kaempferol-glucoside; 6) quercetin; 7) kaempferol. Data are
representative of three different experiments
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acid, quercetin-glucoside, quercetin, kaempferol-glucoside
and kaempferol (Fig. 1, Panel b, solid line). GSC synthe-
sized mainly gallic acid and quercetin-diglucoside (Fig. 1,
Panel b, dotted line). The presence of kaempferol-hexose
([M-H]ˉ ion at m/z 447), kaempferol-dihexose ([M-H]ˉ
ion at m/z 609), quercetin-dihexose ([M-H]ˉ ion at m/z
625) and quercetin-glucuronide methyl ester ([M-H]ˉ ion
at m/z 491) was shown by the mass spectrum of cell
extracts obtained by infusion. The identification of
these compounds is based on their MSn fragmentation
behaviour (Additional file 4: Figure S3, Additional file
5: Figure S4, Additional file 6: Figure S5 and Additional
file 7: Figure S6). In particular, these compounds show
the loss of the hexose (162 Da) or glucuronide methyl
ester (190 Da) moieties, generating the corresponding
glycoside ions at m/z 285 and 301 that, upon further
fragmentation, exhibit the typical fragments of kaemp-
ferol and quercetin, respectively.

Effects of darkness and endogenous flavonoids on
viability of suspension cell cultures
Light treatment was used as a control to determine the
possible effects of darkness and flavonoids on cell viabil-
ity. Staining with FDA was employed to evaluate the
viability of the different cell cultures. Figure 2 (Panel a)
shows the morphological features at day 6 of RSC (a)
and GSC (b) under visible light, whereas in FDA-stained
samples (c and d), only the alive fluorescent cells were
counted. Cell death increased during the whole experi-
mental period, reaching a maximum at day 6 in all
samples (Panel b).
This trend was higher in GSC and it was stimulated by

darkness, albeit this effect was less evident at day 6. Even
in this case, the difference between light- and dark-
treated cells was lower at day 6.

Characterization of PCD markers in suspension cell cultures
Different biochemical and molecular markers of PCD
were analysed in order to determine: i) if the observed cell
death in the two suspension cell cultures grown under
light or dark conditions showed PCD hallmarks; ii) how
flavonoids could modulate the PCD manifestation.
TUNEL and DAPI assays were performed on all

samples at day 0 and 6 (Fig. 3). Panel a shows the feature
of the cells, which were positive to the DAPI and
TUNEL reaction. The blue fluorescence-stained nuclei
(b, e) were counted as an estimation of the total cell
number, while TMR red-fluorescent nuclei (c, f ) repre-
sented fragmented nuclei in PCD-undergoing cells.
These parameters allowed us to estimate the amount of
cells undergoing PCD in different treatments at day 0
and 6 (Panel b), because just these samples showed the
highest differences in ATP levels between GSC and
RSC (see later). PCD was higher in GSC, whereas

darkness inhibited it. In RSC, flavonoids significantly
decreased the amount of TUNEL positive cells and also
abolished the effect of darkness, showing that light
stimulated PCD only in GSC.
Another hallmark of PCD is represented by cyto-

chrome c release from mitochondria (Fig. 4). This
analysis was performed on cytosolic fractions from
different treatments at day 6, in comparison to day 0, as
a control. The densitometric analysis of the antibody
cross-reaction showed that cytochrome c release was
higher in GSC, in particular under light, than in RSC, in
agreement with the results on TUNEL assay. Darkness
partially inhibited this release, but had no effect in
RSC, in accordance to what was observed in TUNEL
analysis.
Since ATP level is known to be crucial for the pro-

gress of PCD, its cellular level was assessed at different

Fig. 2 Cell death in V. vinifera (cv. Limberger) suspension cell
cultures evaluated by FDA staining. Panel a GSC (b, d) and RSC
(a, c) were grown under light conditions for 6 days. After staining
with FDA, they were analyzed under fluorescent (c, d) or visible
(a, b) light. Panel b time-course of total cell death in GSC and RSC,
grown under light or dark conditions, and sampled at day 0, 3 and 6,
respectively. The percentage of dead cells was calculated by the ratio
between FDA-stained and total cell number. Bars are means ± S.D.
of at least three different experiments. Different letters indicate a
significant difference (P ≤ 0.05), evaluated by ANOVA test
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sampling dates (0, 3 and 6 days, Fig. 5, Panel a). At day
0, a significant difference between GSC and RSC was
observed; in particular, the highest ATP concentration
detected in GSC under light could be ascribed to a
higher photosynthetic activity. Moreover, ATP content
in light-treated GSC increased from day 0 to day 3 and
was comparable at day 6, while in dark conditions GSC
underwent a fall in ATP concentration at a level similar
to the initial one. In RSC under light treatment ATP
level reached its maximum at day 3 and, thereafter,
declined at day 6, while in dark conditions it remained
constant at both day 3 and 6. To evaluate the level of
ATP associated to PCD manifestation, a positive
control was performed by treating GSC at day 0 with
10 % ethanol (83 ± 0.11 % of PCD, data not shown), in
comparison to treatment at 80 °C for 10 min (100 %
necrotic cells, data not shown), (Panel b).

Reactive oxygen species (ROS) generation in suspension
cell cultures
Since at day 0 GSC and RSC exhibited comparable levels
of cell death, it was interesting to assess if the level of
ROS production was different in the two systems. Both
cell cultures were incubated with the fluorescent probe
H2DCFDA, to monitor the time-course of ROS produc-
tion (Fig. 6). Panel a shows that GSC generated a signifi-
cant higher amount of ROS in comparison to RSC, but
this ROS overproduction did not induce appreciable
differences in cell death after 105 min (inset Panel a).
On the contrary, when cells were treated with the free
radical generator ABAP, GSC exhibited a dramatic
increase of ROS production (Panel b), paralleled by a
strong increase of cell death (inset Panel b), which was
not observed in RSC.

Discussion
Flavonoids play several and relevant physiological roles.
First, they act as antioxidants, preventing cell death by
delaying/inhibiting the activation of genes related to
PCD. However, flavonoids need to be constantly reduced
in order to function as antioxidants. This could be
achieved only by an efficient reducing system, such as that
of ascorbate and reduced glutathione, which are supplied
by photosynthesis. Second, flavonoids may cause mild un-
coupling of the mitochondrial oxidative phosphorylation,

Fig. 3 PCD in V. vinifera (cv. Limberger) suspension cell cultures,
evaluated by TUNEL assay. Cells at day 0 were observed under
visible light (a, d); nuclei were stained with DAPI (b, e) or TMR-red for
TUNEL assay (c, f), and observed under UV light, with low (b, c) and
high (e, f) magnification (Panel a). TUNEL assay was performed in
GSC and RSC grown under light or dark conditions at day 0 and 6,
to evaluate the percentage of cells undergoing PCD (Panel b),
counting the cells with red fluorescent-stained nuclei as apoptotic-like
dead cells. Bars are means ± S.D. of at least three different experiments.
Different letters indicate significant difference (P ≤ 0.05), evaluated
by ANOVA test

Fig. 4 Cytochrome c release in cytosolic fractions isolated from V.
vinifera (cv. Limberger) suspension cell cultures. GSC and RSC were
grown either under light or dark conditions for 6 days. Samples
were obtained at day 0 and 6, respectively, for the analysis of
cytochrome c release. The densitometric analysis of cross-reactivity
signals were detected after Western blot of cytosolic proteins isolated
from cell cultures, incubated with anti-cytochrome c primary antibody.
Bars are means ± S.D. of at least three independent experiments.
Different letters indicate significant difference (P ≤ 0.05), evaluated
by ANOVA test
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inducing a higher electron flux through the respiratory
chain and decrease of transmembrane potential, thus
preventing ROS generation by mitochondria [34].
In the present work, the effect of darkness and

flavonoids in senescence was assessed by utilizing two
grapevine cell cultures obtained from the same callus,
one with a high (RSC) and the other with a low (GSC)
content of these secondary metabolites (Fig. 1). The
starting material grown on solid medium was prone to
senescence due to nutrient starvation, whereas the onset
of pigmentation observed on the surface of callus was
mainly caused by an excess of light on these cells. When
sub-cultured in liquid medium, their difference in
secondary metabolites at day 0 was, nevertheless, associ-
ated to a similar level of cell death. Since GSC and RSC
possessed the same genotype, as they were originated by
the same callus, they did not genetically differ between
each other, except for a stimulated flavonoid biosynthesis
pathway and for a different capacity of scavenging ROS
overproduction (Fig. 6, Panel b).
The level of cell death in GSC and RSC was low at

the beginning of subculture (day 0) and substantially
comparable, but after 3 days in liquid medium, dark
conditions strongly stimulated cell death in both cell
cultures (Fig. 2). Such a behaviour is in agreement with
previous results [35, 36], demonstrating that darkness
is an inducing factor of cell death. This effect was more
evident at day 3 rather than at day 6 (Fig. 2). The
presence of flavonoids decreased this effect in both
dark- and light-treated cells.
Buchanan-Wollaston et al. [1] have shown that senes-

cence induced by darkness or starvation exhibits a distinct

Fig. 5 ATP content in V. vinifera (cv. Limberger) suspension cell cultures. GSC and RSC were grown under light or dark conditions for 6 days, and
sampled at day 0, 3 and 6, respectively (Panel a). Necrotic- and apoptotic-like samples, used as positive controls, were obtained on GSC at day 0,
after incubation at 80 °C for 10 min or with 10 % (v/v) ethanol for 24 h, respectively (Panel b). Bars are means ± S.D. of at least three independent
experiments. Different letters indicate significant difference (P ≤ 0.05), evaluated by ANOVA test

Fig. 6 Reactive oxygen species (ROS) formation in V. vinifera (cv.
Limberger) suspension cell cultures. ROS generation was estimated
as fluorescence intensity generated by H2DFCA in GSC and RSC at
day 0. Cell cultures were incubated in the absence (Panel a) or presence
(Panel b) of 1 mM ABAP. Insets represent the total amount of dead cells,
evaluated by FDA staining at either 0 and 105 min. Bars are means ± S.D.
of at least three independent experiments
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transcriptome pattern, if compared to the developmental
program. In addition, darkness increases ROS production
[37]. Accordingly, at day 0 (after 23 days of starvation on
solid medium), GSC showed higher ROS evolution than
RSC (Fig. 6), because flavonoids, acting as antioxidants,
decreased ROS production.
After 6 days, apoptosis-like PCD became apparent, as

shown by TUNEL assay (Fig. 3) and cytochrome c re-
lease (Fig. 4). Apoptosis-like PCD was more pronounced
in light-grown GSC than in those grown in the darkness.
Flavonoids decreased this type of death, confirming that,
in addition to dark-induced cell death, these metabolites
specifically protected the cells against PCD. Indeed, a
high ATP level, which favours the execution of apoptosis
[38, 39], was still evident after 6 days in GSC and was
compatible with the occurrence of apoptosis-like PCD
(Fig. 5, Panel a). The higher content of ATP in GSC, if
compared to RSC, can be explained with a more efficient
photosynthetic activity in the former cells, which was
already evident at day 0. The difference in ATP content
between GSC and RSC was amplified also by light treat-
ment, because only suspension cell cultures grown in
light have functional chloroplasts [40]. Darkness lowered
ATP in both GSC and RSC, albeit this effect was more
pronounced in the RSC after 6 days.
The protecting effect of flavonoids against cell death,

particularly after 6 days, could be due to their antioxidant
activity [41, 42]. ROS could be therefore maintained below
a critical level to avoid that they become cytotoxic and
thus acting as necrosis inducers [43]. This protection
could even prevent ROS from behaving as signals to
trigger apoptosis-like PCD [44] in RSC mitochondria,
where ROS synthesis is known to be lower, if compared to
that of chloroplast [45].
It should be stressed that the effect of plastidial ROS has

been found to occur downstream of the mitochondrial
release of pro-apoptotic factors, but before the caspase
activation [46–48]. In GSC grown in the light additional
PCD could thus be induced, by overlapping of mitochon-
drial and chloroplast pathways. The apoptosis-like PCD,
occurring mainly in light-grown GSC (Figs. 3 and 4),
could also depend on the involvement of chloroplasts [44,
49]. In agreement to this, in Arabidopsis UV light alone
induces PCD mediated by caspase-like activities [50]. This
could explain the increase in PCD that was observed in
light-treated GSC even if mitochondrial pathway was
predominant. Conversely, in light- and dark-treated
RSC, flavonoids protected from PCD (Figs. 3 and 4),
which is a phenomenon particularly evident at day 6.

Conclusions
In conclusion, darkness was responsible for triggering
mainly necrotic cell death, induced by high ROS produc-
tion, coupled with an inefficient antioxidant system. It is

noteworthy that cells transferred from solid to liquid
media had to face a strong oxidative environment. Con-
versely, PCD was more stimulated in light-grown GSC,
since the ROS triggering was not counteracted by flavo-
noids. The involvement of polyphenolic compounds
may be also hypothesized at mitochondrial level, as
already suggested in mammals, where such compounds
decrease hydrogen peroxide formation by interacting
with complex I [34]. Similarly, these secondary metabo-
lites could minimize the oxidative damage caused by
plastidial ROS.
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Additional file 5: Figure S4. Structural characterization of gallic acid
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