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Abstract
Background: Thellungiella halophila (also known as Thellungiella salsuginea) is a model halophyte with a small plant size, short life
cycle, and small genome. It easily undergoes genetic transformation by the floral dipping method used with its close relative,
Arabidopsis thaliana. Thellungiella genes exhibit high sequence identity (approximately 90% at the cDNA level) with Arabidopsis
genes. Furthermore, Thellungiella not only shows tolerance to extreme salinity stress, but also to chilling, freezing, and ozone
stress, supporting the use of Thellungiella as a good genomic resource in studies of abiotic stress tolerance.

Results: We constructed a full-length enriched Thellungiella (Shan Dong ecotype) cDNA library from various tissues and whole
plants subjected to environmental stresses, including high salinity, chilling, freezing, and abscisic acid treatment. We randomly
selected about 20 000 clones and sequenced them from both ends to obtain a total of 35 171 sequences. CAP3 software was
used to assemble the sequences and cluster them into 9569 nonredundant cDNA groups. We named these cDNAs "RTFL"
(RIKEN Thellungiella Full-Length) cDNAs. Information on functional domains and Gene Ontology (GO) terms for the RTFL
cDNAs were obtained using InterPro. The 8289 genes assigned to InterPro IDs were classified according to the GO terms using
Plant GO Slim. Categorical comparison between the whole Arabidopsis genome and Thellungiella genes showing low identity to
Arabidopsis genes revealed that the population of Thellungiella transport genes is approximately 1.5 times the size of the
corresponding Arabidopsis genes. This suggests that these genes regulate a unique ion transportation system in Thellungiella.

Conclusion: As the number of Thellungiella halophila (Thellungiella salsuginea) expressed sequence tags (ESTs) was 9388 in July
2008, the number of ESTs has increased to approximately four times the original value as a result of this effort. Our sequences
will thus contribute to correct future annotation of the Thellungiella genome sequence. The full-length enriched cDNA clones
will enable the construction of overexpressing mutant plants by introduction of the cDNAs driven by a constitutive promoter,
the complementation of Thellungiella mutants, and the determination of promoter regions in the Thellungiella genome.
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Background
Thellungiella halophila (also known as Thellungiella salsug-
inea) is well known as a model halophyte for studying abi-
otic stress tolerance, as the plant exhibits extreme salt and
freezing tolerance [1-9]. Thellungiella is closely related to
Arabidopsis, and its genes share approximately 90% iden-
tity to those of Arabidopsis [1,10,11]. Moreover, Thel-
lungiella is characterized by good features from the
perspective of genetic studies, such as small plant size, a
short life cycle, a high seed number, and the ability to self-
pollinate. Furthermore, as in Arabidopsis, transformation
of Thellungiella plants can be accomplished by means of
the floral dipping method. Since the sequence identities
between Thellungiella and Arabidopsis are very high at the
cDNA level, Arabidopsis cDNA microarrays or oligo-
microarrays can be used for transcriptome analysis of
Thellungiella plants. We previously compared expression
levels of various genes between Thellungiella and Arabi-
dopsis plants under normal or high-salinity conditions
using an Arabidopsis cDNA microarray composed of
7,000 Arabidopsis genes. Interestingly, a large number of
genes known to be inducible by abiotic and biotic stresses
were highly expressed in Thellungiella under normal
growth conditions [5]. The use of a 70-mer oligoarray
with 25 000 Arabidopsis genes revealed that Arabidopsis
exhibited a global defense strategy required for bulk pro-
tein synthesis, whereas induced genes in Thellungiella were
involved in protein folding, modification, and redistribu-
tion [2]. However, because of failed hybridization or a
low hybridization rate between Arabidopsis DNAs and
Thellungiella mRNAs, the data obtained from heterolo-
gous microarrays cannot provide an accurate evaluation
of the expression levels. Recently, Thellungiella plants
(Yukon ecotype) treated with drought, salinity, and freez-
ing stresses were used to construct expressed sequence tag
(EST) libraries with a total of 3628 unique genes [9]. A
cDNA microarray was established with these cDNAs, and
the transcriptional profiles of Thellungiella plants under
various stress conditions were obtained [8].

Full-length cDNAs are useful genomic resources not only
for genome annotation, but also for the identification of
promoter regions, transgenic analyses, biochemical analy-
ses, and determination of the three-dimensional structure
of proteins [12]. Full-length enriched cDNA libraries from

Arabidopsis [13,14], rice [15], poplar [16,17], wheat [18],
maize [19], humans [20], mice [21,22], and Drosophila
[23-25] have contributed enormously to elucidating bio-
logical processes in these organisms.

In previous work, we reported the development of full-
length enriched Arabidopsis cDNA libraries from plants
grown under different conditions [13,26] using the bioti-
nylated CAP trapper method with trehalose-thermoacti-
vated reverse transcriptase [27-30]. A total of 155 144
RIKEN Arabidopsis Full-Length (RAFL) clones were iso-
lated and clustered into 14 668 non-redundant cDNA
groups [14]. Using the full-length cDNAs, we also created
a microarray to analyze the expression profiles of Arabi-
dopsis genes under various stress conditions or in various
mutants and transgenic plants [12,26]. Using ectopic
expression of full-length cDNAs, a novel gain-of-function
system, termed the "FOX hunting system" (Full-length
cDNA Over-eXpressing gene hunting system) was devel-
oped [31]. The Arabidopsis genome sequence and
resources, including full-length cDNAs, also provide pow-
erful tools for comparative genomics in furthering the
understanding of the biology and evolution of other plant
species [2,5,10,32]. In the present study, we constructed a
full-length enriched cDNA library from whole Thel-
lungiella plants and various tissues, in addition to cDNAs
from seedlings subjected to high salinity, chilling, or
freezing stress or to abscisic acid (ABA) treatment. We
determined their DNA sequences from both the 5'- and
the 3'-ends to permit the functional annotation of the
Thellungiella full-length cDNAs, and we discuss their pre-
dicted functions related to abiotic stress tolerance.

Results and Discussion
Full-length enriched cDNA library construction and 
sequencing of 20 000 cDNAs
We used the biotinylated CAP trapper method [29] to
construct a full-length cDNA library of Thellungiella halo-
phila (Shandong ecotype) from whole plants as well as
from various tissues, including leaves, roots, flowers, sil-
iques, and mature seeds, of plants treated with high salin-
ity, chilling, freezing stress, and ABA (Table 1). The
λFLCIII vector [33], which accommodates cDNAs in a
broad range of sizes and is useful for the high-efficiency
cloning of long cDNA fragments, was used for the con-

Table 1: Collection of RNA sample for constructing a Thellungiella full-length cDNA library

Sample name Condition Time course Condition Tissues

salt stress NaCl, 250 mM 1, 2, 3, 7 and 14 day agar medium whole plants
cold stress 4°C 2, 4, 8 and 24 hour soil rosette leaves
freezing stress -6°C 1, 2, 4 and 8 hour soil rosette leaves
ABA ABA 50 μM 1, 2, 4 and 8 hour agar medium whole plants
various tissues normal condition soil siliques, mature seeds
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struction of the cDNA library. To reduce the frequency of
representation of highly expressed mRNAs in the library,
normalization procedures [29] were employed in the con-
struction process. The 20000 recombinant clones were
randomly selected and sequenced from both ends. We
determined 18636 and 16535 sequences from the for-
ward and reverse directions, respectively, and from among
the 20000 clones we obtained the forward or reverse
sequences of a total of 19429 clones (Table 2). A total of
35171 sequences have been deposited in the DDBJ public
sequence database (accession numbers, BY800476 to
BY835646). We have named these "RTFL" (RIKEN Thel-
lungiella Full-Length) cDNAs.

Figure 1 shows the size distribution of the Thellungiella
cDNA inserts from 1161 randomly selected clones. The
average size was approximately 1.54 kbp. Our group pre-
viously determined 20683 full-read cDNA sequences
from the RAFL (RIKEN Arabidopsis Full-Length) cDNA
collection, and these sequences are available in the
RARGE database [34]. The estimated average size of the
RAFL cDNA inserts was 1.495 kbp (Motoaki Seki et al.,
RIKEN Plant Science Center, unpublished results). The
average size of the Thellungiella cDNA inserts was thus
slightly longer than the average cDNA inserts from Arabi-
dopsis libraries and similar to those in other plants; for
example, the average rice and wheat cDNA lengths are
both about 1.5 kbp [10,18].

Sequence assembly and the proportion of full-length 
cDNA clones in the library
The 35171 sequences were assembled by using the CAP3
program [35] to evaluate the level of sequence redun-
dancy. Assembling these sequences generated 7402 con-
tigs and 6556 singletons, and the sequenced 20000
cDNAs were clustered into 9569 nonredundant scaffolds
that represented distinct genes (Table 2). Figure 2 shows
the degree of redundancy in the sequences from the cDNA
library. The majority of the cDNAs (6024 cDNAs, 63% of
the total), consisted of a single cDNA in a cluster, and only
5% contained more than six cDNAs in a cluster, indicating
that the normalization procedures were successful.

The cDNA sequence data were submitted for the BLASTN
search to compare with the green plants (Viridiplantae)
mRNA databases in GenBank. Of the 19429 clones that

we obtained as clean sequences, 18 295 clones (94%)
showed > 80% identity, whereas the remaining clones
(6%) had no significant identity to any plant sequences in
GenBank.

We examined the proportion of full-length cDNA clones
in our library. We selected clones that (1) had sequences
from both ends, and (2) showed an Expected Value (E) <
1.0e-20 on the basis of a fastx search using forward
sequences as queries against Arabidopsis proteins (TIGR
v5, ATH1.pep, ftp://ftp.tigr.org/pub/data/a_thaliana/
ath1/SEQUENCES/), with the correct direction of the
reading frame. We considered clones to be full-length if
they met the following criteria: (1) they contained the first
methionine, and (2) the reverse sequence contained the
polyA sequence. Consequently, we selected 12878 clones
as calculation objects and classified 10880 (84.5%) of
these clones as full-length clones. This frequency is nearly
identical to the reported values from the Arabidopsis [14],
rice [15], and wheat [18] libraries.

Functional annotation of RTFL cDNAs
The 9569 nonredundant genes were submitted to InterPro
[36] to obtain functional domain information. InterPro is
an integrated resource for protein families, domains and
functional sites that integrates the following protein sig-
nature databases: PROSITE, PRINTS, ProDom, Pfam,
SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D, and
PANTHER. Protein matches in InterPro are pre-calculated
by using InterProScan software, which combines the dif-
ferent protein signature recognition methods offered by
the InterPro member databases into one resource and pro-
vides the corresponding InterPro accession numbers and
Gene Ontology (GO) annotations [37]. A total of 8289
sequences were assigned to InterPro IDs and GO terms
[see Additional file 1]. According to the obtained GO
terms, the 8289 genes were remapped and classified by
using Plant GO Slim (http://www.geneontology.org/
GO.slims.shtml; [38]).

Figures 3 and 4 show the categorization of Arabidopsis
genes and the 8289 Thellungiella genes assigned to the GO
terms. In most categories, we observed no obvious differ-
ences between the numbers of sequences from Arabidop-
sis and Thellungiella, including genes involved in
biological processes, cellular components, and molecular

Table 2: Characteristics of full-length Thellungiella cDNA library

Source of 
cDNA

Total no. clones No. forward 
sequences

No. reverse 
sequences

Total no. 
sequences

Total no. 
singletons after 
CAP3 analysis

Total no. 
contigs after 

CAP3 analysis

No. gene 
clusters

RTFLa 19429 18636 16535 35171 6556 7402 9569

aRTFL, RIKEN Thellungiella halophila full-length cDNA
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function. Notably, the number of sequences classified as
transcription genes under biological processes in Arabi-
dopsis was approximately twice that in Thellungiella (Fig.
4). Furthermore, the number of Arabidopsis genes associ-
ated with the nucleus under cellular components was also
much higher than that in Thellungiella (Fig. 3A). Although
the total number of transcription factors is not clear in
Thellungiella genome, there seems to be no significant dif-
ference in the proportion of transcription factor genes
between Arabidopsis and Thellungiella genome. The pop-
ulation of cDNAs may reflects the levels of gene expres-
sion. Thus, the expression level of Thellungiella
transcription factors may be lower than that of Arabidop-
sis. Arabidopsis responds strongly to abiotic and biotic
stresses at the transcriptional level. In contrast, Thel-
lungiella does not initiate immediate changes in transcrip-
tion in response to abiotic stresses, and instead
constitutively expresses a large number of genes that cor-
respond to stress-inducible genes in Arabidopsis [5]. Thus,
the difference between Arabidopsis and Thellungiella in
their responses to various stimuli at the transcriptional
level may reflect differences in the number of transcrip-
tion-related genes between the organisms and may
depend partly on the number of transcription factors.

Features of Thellungiella-specific genes
Most Thellungiella genes have a high sequence identity
(approximately 90% at the cDNA level) to Arabidopsis

genes. Numerous studies of salt tolerance in Arabidopsis
suggest that this plant contains most, if not all, the salt-
tolerance related genes that might be found in halo-
phytes[39]. The current hypothesis is that halophytes
employ salt-tolerance mechanisms similar to those found
in glycophytes, including Arabidopsis. However, subtle
differences in this regulation result in large variations in
salt tolerance between glycophytes and halophytes[11]. In
addition, halophytes are hypothesized to exhibit specific
salt-tolerance mechanisms resulting from the induction of
halophyte-specific genes. We divided the 8298 genes into
two groups on the basis of their sequence identities, using
BLASTX searches against the Arabidopsis database. The
group with high sequence identity to Arabidopsis genes (E
value ≤ 1.0e-50) included 7535 genes, and the group with
low identity to Arabidopsis genes (E value > 1.0e-50)
included 763 genes. Previous studies revealed that a
plasma membrane Na+/H+ antiporter (SOS1), a vacuolar
Na+/H+ antiporter (NHX1), and a plasma membrane Na+

transporter (HKT1) are essential for the salt tolerance of
Arabidopsis [40-42], and these mutants exhibit a salt-
hypersensitive phenotype. In contrast, plants that overex-
press SOS1 and NHX1 show higher salt tolerance than
wild-type plants [43,44]. The co-ortholog Thellungiella
genes belong to the first gene group, exhibiting high iden-

Size distribution of the RTFL clonesFigure 1
Size distribution of the RTFL clones. The sequence 
lengths of the Thellungiella cDNA inserts were determined 
from a total of 1161 clones by digestion with SfiI (in the 
cDNA cloning site) or PCR amplification using T3 and T7 
primers.
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Sequence redundancy in the normalized cDNA libraryFigure 2
Sequence redundancy in the normalized cDNA 
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Comparison of the categories of Arabidopsis and nonredundant Thellungiella genesFigure 3
Comparison of the categories of Arabidopsis and nonredundant Thellungiella genes. The 28227 Arabidopsis genes 
and the 8298 nonredundant Thellungiella genes that were assigned InterPro IDs were classified according to the GO terms 
using Plant GO Slim http://www.geneontology.org/GO.slims.shtml into categories based on (A) cellular components and (B) 
molecular function.
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Biological process categories for Arabidopsis genes, nonredundant Thellungiella genes, and Thellungiella genes that showed low identity to Arabidopsis genesFigure 4
Biological process categories for Arabidopsis genes, nonredundant Thellungiella genes, and Thellungiella genes 
that showed low identity to Arabidopsis genes. The 28227 Arabidopsis genes, the 8298 nonredundant Thellungiella 
genes, and the 763 Thellungiella genes that showed low identity to Arabidopsis genes assigned to InterPro IDs were classified 
according to the GO terms using Plant GO Slim http://www.geneontology.org/GO.slims.shtml for biological processes. † indi-
cates the categories in which the number of Thellungiella genes was more than 1.5 times the number of Arabidopsis genes. * 
indicates categories in which the number of Thellungiella genes was more than 1.5 times the number of Arabidopsis genes. The 
number of Thellungiella genes under the categories of transport, DNA metabolic process, generation of precursor metabolites 
and energy, response to abiotic stimulus, multicellular organismal development, response to external stimulus, and cell differ-
entiation was more than 1.5 times that in Arabidopsis.
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tity to Arabidopsis genes. This suggests that some salt-tol-
erance mechanisms are common to both glycophytes and
halophytes.

We compared the categorization of the whole Arabidopsis
genome with the categories of the 763 Thellungiella genes
that exhibited low identity to Arabidopsis genes (Fig. 4).
Of the genes involved in biological processes, the number
of genes in the categories for transport, DNA metabolic
process, generation of precursor metabolites and energy,
response to abiotic stimulus, multicellular organismal
development, response to external stimulus, and cell dif-
ferentiation in Thellungiella were more than 1.5 times the
number in Arabidopsis (Fig. 4). Moreover, in regards to
molecular function, the proportion of genes involved in
transporter activity in Thellungiella was also higher than in
Arabidopsis. Less NaCl accumulates in Thellungiella plants
than in Arabidopsis under similar salinity conditions, sug-
gesting that Thellungiella has a superior system for sup-
pressing Na+ influx or for excreting Na+ [5].
Electrophysiological analysis indicates that Thellungiella
also exhibits high potassium/sodium selectivity, implying
that Thellungiella has specific ion channel features that
lead to superior homeostasis with respect to sodium and
potassium [7]. Arabidopsis that overexpresses a plasma
membrane Na+/H+ antiporter gene, SOS1, shows salinity
tolerance and represses its sodium uptake compared with
that of wild-type plants [44]. Likewise, the expression
level of SOS1 in Thellungiella is higher than in Arabidopsis
[5,45]. Although SOS1 overexpression suggests a contri-
bution of this gene to the salt tolerance of Thellungiella,
the large proportion of transport genes may imply that
Thellungiella has a distinct ion transportation system regu-
lated by these specific genes.

Salt tolerance system using Thellungiella-specific 
transporter genes
Table 3 [see Additional file 2] lists the Thellungiella genes
with low identity (E value > 1.0e-50) to the Arabidopsis
genes classified under transporter genes. Several transport-
ers, including chloride channels and P-type H+-ATPase,
play important roles in the salt tolerance of plants. Home-
ostasis of Na+ and Cl- is an important mechanism to
reduce NaCl stress in higher plants. Chloride channels
(CLCs) are a group of voltage-gated Cl- channels originally
identified in animals [46]; they have diverse cellular func-
tions such as stabilizing cell membrane potential and reg-
ulating cell volume and transcellular chloride transport
[47]. Recently, a chloride channel gene, GmCLC1, was
cloned from soybeans [48]. Transgenic tobacco BY-2 cells
expressing GmCLC1 were able to drain Cl- more efficiently
from vacuoles than was the case in untransformed BY-2
cells, and the transgenics showed a higher NaCl tolerance
[48]. The plant cell membrane is energized by an electro-
chemical gradient produced by P-type H+-ATPase (proton

pump). These pumps are encoded by at least 12 genes in
Arabidopsis. One of the Arabidopsis P-type H+-ATPase
genes, AHA4, was expressed most strongly in the root
endodermis [49]. The aha4 mutant plants exhibited a
clear growth reduction under a mild stress of 75 mM NaCl
compared with wild-type plants, and the ratio of Na+ to K+

in the aha4 mutants increased to between four and five
times the values in wild-type plants. These results suggest
that the aha4 mutants were compromised in their ability
to exclude Na+ under salinity stress [49]. P-type H+-
ATPases were also found in a halotolerant cyanobacte-
rium, Aphanothece halophytica, and a marine alga, Tet-
raselmis viridis [50,51]. Aphanothece halophytica grows
under a wide range of salinity conditions (from 0.25 to
3.0 M NaCl), and Na+/H+ antiporters in A. halophytica play
a crucial role in Na+ efflux to provide enhanced salt toler-
ance. Since the efflux of Na+ mediated by Na+/H+ antiport-
ers utilizes protons as the motive force provided by a
primary proton pump, H+-ATPase, the P-type H+-ATPase
is thought to contribute to the salt tolerance of this species
[52]. On the other hand, vacuolar ATPase (V-ATPase) is
the major proton pump that establishes and maintains an
electrochemical proton gradient across the tonoplast.
Expression of several V-ATPase subunits or an increase in
V-ATPase activity induced by salt stress has been observed
in a number of glycophytic species [53], suggesting that
increased V-ATPase levels or activity are required to drive
Na+ sequestration under salt stress. Recently, the V-
ATPase-deficient det3 Arabidopsis mutant was shown to
be extremely salt sensitive. Moreover, SOS2, a protein
kinase that phosphorylates SOS1, interacted directly with
the V-ATPase regulatory subunits B1 and B2 [54]. These
studies indicate that V-ATPase activity plays a key role in
salt tolerance. Although most Thellungiella genes show
approximately 90% identity with Arabidopsis genes, the
Thellungiella genes encoding transporters appear to be
remarkably different from their Arabidopsis co-orthologs.
Whether the sequence diversities among these genes are
the source of the large differences in salt tolerance
between Thellungiella and Arabidopsis is a topic of great
interest.

Conclusion and cDNA resources
We generated a full-length enriched cDNA library of Thel-
lungiella halophila from various tissues and whole plants
treated with salinity, chilling, freezing stresses, or ABA. We
isolated about 20000 full-length enriched cDNA clones
(RTFL cDNAs) and sequenced them from both ends, and
we outlined the features of their predicted functions (cod-
ing Thellungiella proteins) by comparing them with those
of Arabidopsis. Moreover, the 35171 RTFL cDNA
sequences have been deposited in the DDBJ public data
center. The number of T. halophila (T. salsuginea) ESTs
entries was 9388 as of July 2008, which means that our
effort has increased the number of ESTs by four times the
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Table 3: Thellungiela genes showing low identity against Arabidopsis genes classified in 'transport' using GO slima

Clone name InterPro ID Description AGI codeb E value c

RTFL01-07-H15 IPR001807 Chloride channel, voltage gated AT5G40890.2 1.00E-49

RTFL01-12-M19 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT1G60190.1 6.00E-45

RTFL01-29-P17 IPR000463 Cytosolic fatty-acid binding AT2G25590.1 8.00E-45

RTFL01-05-O18 IPR000803 Facilitated glucose transporter AT3G58130.2 5.00E-43

RTFL01-21-M15 IPR003612 Plant lipid transfer protein/seed storage/trypsin-alpha amylase inhibitor AT2G38540.1 5.00E-43

RTFL01-24-G14 IPR000264 Serum albumin AT5G09460.1 5.00E-43

RTFL01-49-P05 IPR003612 Plant lipid transfer protein/seed storage/trypsin-alpha amylase inhibitor AT2G38540.1 5.00E-43

RTFL01-36-E03 IPR007271 Nucleotide-sugar transporter AT5G65000.2 3.00E-41

RTFL01-05-G14 IPR001993 Mitochondrial substrate carrier AT5G42130.1 3.00E-38

RTFL01-14-G02 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT1G08010.2 1.00E-34

RTFL01-43-C04 IPR002075 Nuclear transport factor 2 AT1G69250.1 4.00E-34

RTFL01-21-H04 IPR004240 Nonaspanin (TM9SF) AT4G12650.1 5.00E-34

RTFL01-18-D17 IPR006455 Homeobox domain, ZF-HD class AT5G42780.1 2.00E-31

RTFL01-07-P02 IPR005829 Sugar transporter superfamily AT4G10410.1 2.00E-30

RTFL01-08-J20 IPR001757 ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter AT2G31150.1 3.00E-28

RTFL01-06-N05 IPR003612 Plant lipid transfer protein/seed storage/trypsin-alpha amylase inhibitor AT3G18840.2 1.00E-27

RTFL01-40-M18 IPR004240 Nonaspanin (TM9SF) AT1G10950.1 1.00E-27

RTFL01-11-J21 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT3G24503.1 7.00E-27

RTFL01-39-I23 IPR008389 ATPase, V0 complex, subunit H AT4G26710.2 2.00E-23

RTFL01-52-J14 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT3G54760.1 5.00E-21

RTFL01-33-P14 IPR000568 ATPase, F0 complex, subunit A AT4G13740.1 6.00E-15

RTFL01-01-D06 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT1G29760.1 6.00E-15

RTFL01-20-A07 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT1G29760.1 6.00E-15

RTFL01-28-P24 IPR001622 Voltage-dependent potassium channel AT5G55430.1 3.00E-13

RTFL01-25-D12 IPR000245 ATPase, V0 complex, proteolipid subunit C, AT1G75630.1 7.00E-08

RTFL01-22-P12 IPR000264 Serum albumin AT5G09460.1 1.00E-07

RTFL01-03-P24 IPR006121 Heavy metal transport/detoxification protein AT5G11890.1 2.00E-06

RTFL01-40-P02 IPR002946 Intracellular chloride channel AT5G08450.3 3.00E-04
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number before our study. Our sequences will thus con-
tribute to correct annotation of the Thellungiella genome
sequence in the near future. The RTFL cDNA clones will
also enable the construction of overexpressing mutant
plants by introduction of the cDNAs driven by a constitu-
tive promoter, as well as the complementation of Thel-
lungiella mutants and the determination of promoter
regions in the Thellungiella genome. The RTFL clones will
be available for distribution through the RIKEN Biore-
source Center http://www.brc.riken.go.jp/lab/epd/Eng/.

Methods
Plant materials and stress treatments
Thellungiella halophila (Shandong ecotype) seeds were
sown on Murashige and Skoog (MS) plates containing
0.8% (wt/vol) agar and 1% sucrose. The seeds were strati-
fied at 4°C for two weeks and then transferred to 22°C
under continuous light for germination and growth. Three
weeks after germination, seedlings of Thellungiella were
transferred to 250 mM NaCl (salt stress) or 50 μM ABA
(ABA treatment) water, or were transferred onto separate
9-cm plastic pots filled with a 1:1 mixture of perlite/ver-
miculite and watered with 1000-fold diluted Hyponex™
(Hyponex, Osaka, Japan). One week after transfer onto
the soil pots under 16 hours light – 8 hours darkness at
22°C, the seedlings were subjected to 4 °C (cold stress) or
-6°C (freezing stress) in a growth chamber under 24
hours darkness.

A Thellungiella full-length cDNA library was constructed
from a mixture of mRNA extracted from stress-treated
plants and various tissues of Thellungiella. Thellungiella
plants were subjected to various stress treatments: high-
salinity (250 mM NaCl for 1, 2, 3, 7, and 14 days), cold
temperatures (4°C for 2, 4, 8, and 24 hours), freezing

temperatures (-6°C for 1, 2, 4, or 8 hours), or ABA (50 μM
ABA for 1, 2, 4, and 8 hours). Control plants were grown
under unstressed conditions under16 hours light – 8
hours darkness at 22°C. After the stress treatments, mRNA
was extracted from whole plants (salt stress and ABA treat-
ment) or rosette leaves (cold and freezing stresses) col-
lected at each point in time. Rosette leaves and cauline
leaves, roots, flowers, and siliques were collected from 7-
to 10-week-old plants, and mature seeds were collected
from 12- to 20-week-old plants.

RNA extraction and construction of a full-length cDNA 
library
Total RNA was prepared by using TRIZOL Reagent (Life
Technologies, Rockville, MD, USA) from the treated sam-
ples. A full-length cDNA library was constructed as previ-
ously reported [14,27,28] by means of the biotinylated
CAP trapper method using trehalose-thermoactivated
reverse transcriptase [28]. We used the λFLCIII [33] vector,
which accommodates cDNAs in a broad range of sizes and
is thus useful for the high-efficiency cloning of long cDNA
fragments, for construction of the cDNA libraries [33].
The λFLCIII vectors can also be bulk-excised by a Cre-lox-
based system free of size bias to generate the plasmid
libraries. Normalization [29] was also introduced in the
construction of the full-length cDNA library to reduce the
frequency of highly expressed mRNAs in the library. The
method is based on hybridization of first-strand, full-
length cDNA as the tester and cellular biotinylated RNA
extracted from stress-treated plants and various tissues of
Thellungiella as the normalizing driver.

Sequencing of Thellungiella cDNA clones
The DNA of each clone was directly amplified from 384
bacterial cultures in a glycerol stock plate by the RCA

RTFL01-03-G04 IPR003663 Sugar transporter AT5G50540.1 0.001

RTFL01-11-N06 IPR000109 TGF-beta receptor, type I/II extracellular region AT3G55610.1 0.019

RTFL01-13-J08 IPR005829 Sugar transporter superfamily AT5G49665.1 0.073

RTFL01-11-G05 IPR007114 Major facilitator superfamily AT1G05300.2 0.075

RTFL01-17-J21 IPR000194 ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding AT4G19830.1 0.25

RTFL01-38-L07 IPR011116 SecA Wing and Scaffold AT3G55160.1 0.76

RTFL01-20-G20 IPR004100 ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal AT5G60470.1 1.2

a The 9,569 nonredundant Thellungiella genes were submitted to InterPro. The 763 Thellungiella genes exhibiting low identity (E value > 1.0e-50) 
against Arabidopsis genes assigned to InterPro ID were classified according to the GO terms using GO slim.
b Arabidopsis gene showing the highest identity with the Thellungiella cDNA clone.
c Sequence identity between the Thellungiella clone and the Arabidopsis counterpart (show AGI code) using BLASTX searches
against Arabidopsis database.

Table 3: Thellungiela genes showing low identity against Arabidopsis genes classified in 'transport' using GO slima (Continued)
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method [55] using a TempliPhi HT DNA amplification kit
(GE Healthcare, United Kingdom). End sequencing of
20000 clones was performed using ABI 3700 capillary
sequencers (Applied Biosystems, Foster City, CA, U.S.).
The M13 (-21) primer (5'-TGTAAAACGACGGCCAGT-3')
and the 1233 primer (5'-AGCGGATAACAATT-
TCACACAGGA-3') were used for forward and reverse
sequencing, respectively.

Trimming of sequence data and assembly
We used sim4 software for the detection of vector
sequences [56]. Raw sequence data were base-called using
the Phred software [57,58]. Regions of low quality found
at both edges of each raw sequence were discarded, and
we extracted only the high-quality region (Phred quality
score > 14, and more than 20 bases repeated). After this
initial evaluation, sequence data shorter than 100 bases in
length or with many low-quality regions (Phred quality
score ≤ 14, and more than 50% of its total length) were
omitted. The ESTs were assembled by using CAP3 soft-
ware [35] with its default parameters. All sequences were
submitted to the DNA Databank of Japan (DDBJ) with
accession numbers BY800476 to BY835646.

cDNA insert size of the RTFL clones
The sequence lengths of the Thellungiella cDNA inserts
were determined from a total of 1,161 clones by digestion
with SfiI (in the cDNA cloning site) or PCR amplification
using T3 (5'-TGTAAAACGACGGCCAGT-3') and T7 prim-
ers (5'-AATACGACTCACTATAGGG-3').

Full-length cDNA library quality
To examine the proportion of full-length cDNA clones in
this library, we selected the following clones as calculation
objects: (1) clones with sequences from both ends, and
(2) clones showing an Expected Value of (E) < 1.0e-20 in a
fastx search using forward sequences as queries against
Arabidopsis proteins (TIGR v5, ATH1.pep), with the cor-
rect direction of the reading frame. We used the following
criteria to classify clones as full-length: (1) clones must
include the first methionine, and (2) the reverse reading
sequence must include the polyA sequence.

Scaffold construction
In order to obtain a non-redundant set of transcripts, the
clones were clustered according to clone names. To
accomplish this, we parsed the .ace file from the CAP3
program output to build scaffolds, which are groups of
sequences that represent a unique transcript for which the
relative position and orientation of the fragments can be
inferred. Using clone names, the contigs or singletons cor-
responding to the two ends of a given clone were joined
by adding 20 N's in the middle of both sequences. Since
20 is more than the default window size in BLAST
searches, these N's did not interfere with the BLAST anal-
yses.

Functional annotation of the sequences
Once these scaffolds were created, the sequences were
submitted to InterPro [36] to obtain functional domain
information. Protein matches in InterPro were pre-calcu-
lated with InterProScan software, available from http://
www.ebi.ac.uk/Tools/InterProScan/[37,59]. InterProS-
can provided the corresponding InterPro accession num-
bers and GO annotation in the results [37]. The genes
assigned to InterPro ID were classified according to the
GO terms developed by InterPro using Plant GO Slim
(http://www.geneontology.org/GO.slims.shtml; [38]).
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