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Abstract

Background: Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to
other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA
editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit
complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the
evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay
between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species,
Geranium maderense and Pelargonium x hortorum.

Results: Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing.
Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation
technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach.
Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis
to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage
and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and
P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other
angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts
for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly
divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional.

Conclusions: The findings support the use of the Illumina platform and assemblers optimized for transcriptome
assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In
addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion
nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates
the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the
nuclear, plastid, and mitochondrial genomes in plants.
Background
Four remarkable evolutionary phenomena are associated
with organellar genomes of Geraniaceae. First, mitochon-
drial genomes show multiple, major shifts in rates of syn-
onymous substitutions, especially in the genus Pelargonium
[1,2]. Rate fluctuations of such magnitude have been
documented in only two other plant lineages, Plantago
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[3] and Silene [4-6]. Second, mitochondrial genomes
have experienced extensive loss of genes and sites of
RNA editing. At least 12 putative gene losses have been
documented in Erodium [7], and mitochondrial genes
sequenced from Pelargonium x hortorum had a drastic
reduction in predicted or verified RNA editing sites
compared to all other angiosperms examined [1]. Third,
genome-wide comparisons of nucleotide substitutions in
plastid DNA indicated rapid rate acceleration in genes
encoding ribosomal proteins, RNA polymerase, and
ATP synthase subunits in some lineages. In the case of
RNA polymerase genes there was evidence for positive
selection [8,9]. Fourth, plastid genomes of Geraniaceae
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are the most highly rearranged of any photosynthetic land
plants examined [10-13]. Multiple and extreme contractions
and expansions of the inverted repeat (IR) have resulted in
genomes with both the largest IR (74,571 bp, [11]) as
well as the complete loss of this feature [12,13]. Con-
siderable accumulation of dispersed repeats associated
with changes in gene order has been documented along
with disruption of highly conserved operons and repeated
losses and duplications of genes [12]. In P. x hortorum
plastids, these genomic changes have generated several
fragmented and highly divergent rpoA-like ORFs of ques-
tionable functionality [8,10-12], despite the fact that rpoA
encodes an essential component of the plastid-encoded
RNA polymerase (PEP).
Because nuclear genes supply both organelles with the

majority of their proteins, it is likely that the extensive
organellar genomic upheaval in Geraniaceae will also
influence the evolution of organelle-targeted genes in
the nuclear genome. For example, given the drastic re-
duction of RNA editing in Geraniaceae mitochondrial
transcripts, it is reasonable to expect a correlated reduc-
tion of nucleus-encoded pentatricopeptide repeat (PPR)
proteins, many of which are critical for organellar RNA
editing [14-17]. The uncertain status of the P. x hortorum
plastid-encoded rpoA gene is also likely to have nuclear
consequences. If this plastid gene is not functional, then a
functional copy might have been relocated to the nuclear
genome, which has only occurred once in the evolution of
land plants in mosses [18,19]. Alternatively, it is possible
that PEP has become nonfunctional in P. x hortorum, as
observed in the holoparasite Phelipanche aegyptiaca [20].
In P. aegyptiaca, loss of all plastid-encoded PEP compo-
nents (rpoA, rpoB, rpoC1 and rpoC2) resulted in the paral-
lel loss of the requisite nucleus-encoded components
(sigma factors) that assemble with the plastid encoded
proteins to form the core of the PEP holoenzyme [20]. In
contrast, if the highly divergent plastid rpoA gene is still
functional in P. x hortorum, then the typical set of sigma
factors should be present in the nuclear genome.
One prerequisite to begin to address the effects of

organellar genomic upheaval on the nuclear genome in
Geraniaceae, is availability of nuclear sequence informa-
tion. Transcriptome sequencing provides a tractable
proxy for nuclear gene space. The use of next-generation
sequencing (NGS) for transcriptome sequencing is wide-
spread because volumes of data can be generated rapidly
at a low cost relative to traditional Sanger sequencing [21].
The assembly of reads into contigs may be executed using
a de novo or a reference-based approach [22]. In studies
of non-model organisms, de novo assembly is more com-
monly used due to the absence of a closely related refer-
ence [23,24]. A survey of recent transcriptome studies in
comparative biology demonstrates that most sequencing
projects are focusing on non-model organisms where little
or no genomic data is available [22,25-31]. The lack of a ref-
erence genome makes the reconstruction and evaluation of
the transcriptome assembly challenging. Several issues must
be addressed when performing transcriptome sequencing
of non-model organisms, including which NGS platform
should be employed, how much sequence data is needed to
provide a comprehensive transcriptome, which assembler
should be utilized, and what tissues should be sampled.
This paper provides a comprehensive comparison of the

transcriptomes of two non-model plant species, Pelargo-
nium x hortorum and Geranium maderense, from the two
largest genera of Geraniaceae. There were three primary
goals for the initial comparative transcriptome analysis in
Geraniaceae: (1) What are the best sequencing platforms
and assembly methods for generating a high-quality tran-
scriptome that broadly covers gene space in the ab-
sence of a reference genome? (2) Does sequencing from
multiple tissue types improve the breadth of transcrip-
tome coverage? (3) Are there any losses of PPR proteins
involved in RNA editing and sigma factors associated
with PEP in Geraniaceae?

Results
Ribosomal RNA content and Illumina library complexity
To assess the efficiency of ribosomal RNA (rRNA) deple-
tion in Geraniaceae transcriptome libraries rRNA contigs
were identified using rRNA from Arabidopsis thaliana
as a reference. All Illumina reads (146,690,142 reads for
Geranium maderense and 148,749,374 reads for Pelar-
gonium x hortorum) were mapped to rRNA contigs as
described in methods, and 0.7% and 2% of the reads of
G. maderense and P. x hortorum were identified as rRNA
reads, respectively. Library complexity was analyzed using
Picard [32] and rRNA reads were eliminated prior to the
analysis. The percentages of unique start sites were 42.7%
and 46.1% for G. maderense and P. x hortorum, respect-
ively. The values for rRNA content and library complexity
were comparable to other transcriptome analyses using
similar approaches [33,34].

Assessment of sequencing platforms and assemblers for
transcriptome assembly
To determine the optimal sequencing and assembly
strategy, the efficacy of five different assemblers was ex-
amined using two initial data sets generated by Roche/
454 FLX and Illumina Hiseq 2000 platforms for P. x
hortorum. The Illumina run produced approximately 40
times more sequence data than the 454 run, even though
the cost of the 454 data was at least four times more than
the Illumina data (Table 1). A comparison of basic assem-
bly statistics (Table 2) showed that the Trinity assembler
outperformed all other platform/software combinations
in terms of number of contigs, number of assembled
nucleotides, mean and maximum contig length, and



Table 1 The Pelargonium x hortorum transcriptome dataset read statistics

Technology Number of trimmed reads Number of trimmed bases Max read length Min read length

454 472,268 119,394,317 828 50

Illumina 46,475,742 4,674,574,200 100 100
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N50. More generally, the Illumina assemblers consistently
outperformed the 454 assemblers, although the MIRA and
Newbler 454 assemblers produced longer maximal contigs
than SOAPdenovo and SOAPdenovo-trans (SOAPtrans).
To determine the amount of usable protein sequence
information generated by each assembler, the assemblies
were translated as described in methods and compared
(Table 3). Again, the Illumina assemblers outperformed
the 454 assemblers in all metrics, with the Trinity assem-
bler providing the most amino acids with the longest
mean and maximal sequences. The length distribution of
assembled nucleotides and translated amino acids further
confirms that Trinity outperformed SOAPdenovo and
SOAPtrans, and all three Illumina assemblers outper-
formed the 454 assemblers (Figure 1).
Two important considerations in assembly analysis are

the breadth of gene space coverage and the degree of cover-
age fragmentation. A good assembler should generate high-
quality assemblies that contain as many reference tran-
scripts as possible, and each reference transcript should be
covered as completely as possible with a single long contig
rather than a combination of several short contigs. To as-
sess assembly coverage and fragmentation, two published
data bases were used, 357 ultra-conserved ortholog (UCO)
coding sequence [35] from Arabidopsis and 959 single copy
nuclear genes shared between Arabidopsis, Oryza, Populus,
and Vitis [36]. Trinity and SOAPtrans outperformed all other
assemblers in terms of the percentage of reference genes
identified, completeness of coverage (i.e. fraction of refer-
ence gene coverage by one or more contigs), and contiguity
of coverage (i.e. fraction of reference gene coverage by a
single long contig), with Trinity performance slightly better
than SOAPtrans at higher thresholds (Figures 2 and 3).
To examine whether the superior performance of Trin-

ity and SOAPtrans was due to the much larger amount
(40 times) of Illumina data than 454 data, the Illumina
assemblers were re-anlayzed using a data set containing
1/40th of the Illumina reads (Additional file 1). In terms
of contiguity and completeness, the performance of
Table 2 Basic assembly statistics for the Pelargonium x hortor

Newbler MIRA

Number of nonredundant contigs 28,182 30,947

Total bases 12,972,883 15,326,

Max contig length 8,147 12,431

Mean contig length 460 495

N50 478 525
Trinity using the reduced Illumina data set remained
superior to the 454 programs (Newbler, MIRA) that
used the entire 454 data sets. In contrast, the perform-
ance of SOAPdenovo and SOAPtrans were noticeably
worse with the reduced Illumina data set than with the
full data set, producing results that were generally worse
than the original 454 assemblies.

Effect of sequencing depth on assembly coverage
breadth and fragmentation
To determine how much sequence data is needed to as-
semble a high-quality transcriptome with broad coverage,
146,690,142 reads for G. maderense and 148,749,374 reads
for P. x hortorum were generated on the Illumina Hiseq
2000 platform assembled using Trinity with different
increments of reads from 5% to 100% of the total. While
the number of contigs assembled continued to increase
with increasing numbers of reads (Figure 4A), the percent-
age of reference genes recovered and their contiguity and
completeness plateaued at approximately 40% of the total
reads (Figure 4B-D). Including the remaining 60% of the
reads increased contiguity and completeness by only 1%
to 2% (Figure 4B-C). Although there were more translated
contigs of G. maderense than P. x hortorum, the contiguity
and completeness of both species were very similar.
Although increasing the number of reads beyond

10% contributed little to finding novel hits to the local
Arabidopsis data base, increasing the amount of data did
help extend the existing contigs and generate longer align-
ments to reference genes. To evaluate this, the contiguity
of all contigs relative to the two published databases was
calculated at different contiguity thresholds up to 100%
(Figure 5). The inclusion of more reads generated assem-
blies with higher contiguity, especially when contiguity
thresholds were greater than 50%. To allow for the high
level of sequence divergence between Geraniaceae and
Arabidopsis, the number of contigs that had contiguity
thresholds ≥80% was calculated. When 100% of the reads
were used 4185 contigs and 4494 contigs were found in
um transcriptome

SOAPdenovo Trinity SOAPtrans

67,028 67,614 62,470

277 39,088,184 58,210,111 33,057,051

6,616 16,017 7,574

583 860 529

782 1,319 678



Table 3 Translated contig statistics for Pelargonium x hortorum

Newbler MIRA SOAPdenovo Trinity SOAPtrans

Number of translated contigs 18,525 19,279 42,907 39,742 44,379

Total amino acids (AA) 2,413,770 2,575,430 8,363,275 11,058,408 7,697,127

Max translated AA length 902 1,086 1,902 2,618 2,520

Mean translated AA length 130 133 195 278 173

N50 145 145 278 387 230
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G. maderense and P. x hortorum, respectively. Reducing
the read input to 40% reduced contiguity values by 7%
(4163/4494) in G. maderense and 11% (3731/4185) in
P. x hortorum.

Functional assessment of Geraniaceae nuclear
transcriptomes
The assemblies generated using 100% of the reads for both
Geraniaceae species were used for functional annotation.
Assemblies were first aligned against the NCBI nr data-
base and the alignment results were used to generate the
gene ontology (GO) terms. Of the 114,762 contigs in P. x
1
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Figure 1 Contig length. (A) Contig length distribution. The vertical dashe
than 200 bp were disregarded for this analysis. (B) Translated contigs lengt
amino acids (aa). Contigs shorter than 50 aa were disregarded for this anal
hortorum, 56,283 (49%) had blast hits; 42,506 (37%) were
annotated and 222,765 GO terms were retrieved (Table 4).
Of the 119,217 contigs in G. maderense, 76,332 (64%) had
blast hits; 58,461 (49%) were annotated (Table 4) and
311,108 GO terms were retrieved. The annotation files
are shown in Additional file 2. The distribution of gene
ontology annotations was examined using GO-slim
(plant) ontology to compare the transcriptomes of G.
maderense and P. x hortorum. Although the number of
annotated contigs differed substantially between the two
transcriptomes (Table 4), the proportion of annotated
contigs in all categories with >1% representation within
10,000 100,000

contigs [bp]

1,000

contigs [aa]

d line shows the arbitrary cutoff of 200 base pairs (bp). Contigs shorter
h distribution. The vertical dashed line shows the arbitrary cutoff of 50
ysis.
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Figure 2 Contiguity (A) and completeness (B) of different assemblers at different thresholds. The assemblies were aligned with two
published reference data bases: 357 ultra-conserved ortholog (UCO) coding sequence [35] and 959 single copy nuclear genes [36].
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the categories cellular component, molecular function,
and biological process were very similar (Figure 6). This
similarity persists even though only emergent leaves
were sampled for G. maderense versus four tissue types
(emergent and expanded leaves, roots and flowers) for
P. x hortorum.
To more directly address the question whether sequen-

cing from multiple tissue types improves the breadth of
transcriptome coverage, orthologous genes between G.
maderense and A. thaliana and between P. x hortorum
and A. thaliana were identified. Of the 35,386 protein
sequences from A. thaliana, the G. maderense assembly
had homologs to 11,131 sequences and the P. x hortorum
assembly had homologs to 11,583 sequences. The com-
parable numbers of orthologous genes found for the two
Geraniaceae species indicated that there was little im-
provement on the breadth of transcriptome coverage by
sequencing from multiple tissue types (1 versus 4 tissues
for G. maderense and P. x hortorum, respectively).

Identification of selected organelle targeted genes
Pentatricopeptide repeat proteins (PPRs) are a large family
of RNA binding proteins encoded by over 400 genes in
angiosperms; most are organelle targeted and involved in
regulating organelle gene expression. The transcriptomes
of P. x hortorum and G. maderense were annotated using
429 Arabidopsis PPR sequences as a reference database
(Table 5). The overall number of PPR genes varied consid-
erably between the two Geraniaceae and Arabidopsis, with
PPR gene number reduced in P. x hortorum. The numbers
of P class PPR genes were found to be similar in all three
species, whereas many fewer PLS class genes were found
in the Geraniaceae, especially in P. x hortorum.
Sigma factors are nuclear encoded, plastid targeted

proteins that assemble with four plastid encoded proteins
(rpoA, rpoB, rpoC1 and rpoC2) to form the core of the
PEP holoenzyme. At least one copy of each of the six
Arabidopsis sigma factors was detected in both the G.
maderense and P. x hortorum transcriptomes (Table 5).
The nucleotide and amino acid sequence identities between
Arabidopsis/Geranium and Arabidopsis/Pelargonium for
all six sigma factors were very similar (Table 6). The four
contigs from G. maderense that aligned to sigma factor 2
were similar to each other in nucleotide sequence identity
(87%), suggesting that they may represent variant copies
of the same gene. Two of the three contigs from G.
maderense that aligned to sigma factor 5 were very similar
to each other but less so to the third contig (98% versus
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Figure 3 Completeness and contiguity results at threshold 80% using two published reference protein sets. Data sets: (A) 959 single
copy nuclear genes (APVO); (B) 357 ultra-conserved ortholog (UCO) coding sequence [35,36]. Cont = contiguity, comp = completeness, % hits =
percentage of hits in reference transcriptome.
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71% nucleotide sequence identity). Sigma factors 2 and 6
were each represented by two P. x hortorum contigs, how-
ever only one of the contigs for each sigma factor appeared
functional having start/stop codons at the 5′ and 3′ ends
and lacking internal stop codons. Further experiments are
needed to determine if the copies with internal stop codons
are pseudogenes or assembly artifacts.

Discussion
Strategies for de novo assembly of transcriptomes
The use of NGS platforms is widespread and is applied
in many research fields as volumes of data can be gener-
ated rapidly at a low cost relative to traditional Sanger
sequencing [21]. RNA-seq, one popular NGS application,
provides an efficient and cost-effective way of obtaining
transcriptome data. There are a number of platforms
available for generating NGS data [37,38]. Currently among
the most popular are the Roche/454 FLX (http://www.
roche.com) and the Illumina Hiseq 2000 (formerly Solexa;
http://www.illumina.com) platforms. The Roche/454 FLX
system is advantageous when longer reads are important
(average read length 700 bp), whereas the Illumina system
provides deeper sequencing coverage at a reduced cost
per base, albeit with shorter read length (average length
100 bp).
For each platform various assemblers have emerged

but during the past several years Roche 454 sequencing
and the platform-specific assembler Newbler has been
the most common approach for de novo assembly of
transcriptome data [39-43]. This may be attributed to
the idea that longer reads are more likely to overcome
the specific challenges of de novo transcriptome as-
sembly. Illumina sequencing has been used mainly
when a related organism’s genome was available for
reference-based assembly [44,45], although due to recently
increased read length it is becoming more common for
use in de novo assembly as well [46,47]. Several recent
studies compared the performance of different sequencing
platforms and assembly methods [48-50] but none of
these comparisons evaluated the level of completeness
or contiguity of their assemblies, nor was the performance
of the assemblers evaluated without known genome
information, which is the situation for any project on
non-model organisms.

http://www.roche.com
http://www.roche.com
http://www.illumina.com
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of sequencing reads. (A) number of contigs, (B) contiguity, (C) completeness, and (D) percentage of hits. For completeness and contiguity two
published reference protein sets were used (357 ultra-conserved ortholog (UCO) coding sequence [35] and 959 single copy nuclear genes [36]).
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Our comparisons of sequencing platforms and assemblers
for the Geraniaceae clearly indicated that the Illumina plat-
form with Trinity assembly delivered the best performance
in assembling a complete transcriptome in the absence of a
reference genome. The Illumina assemblers (Trinity, SOAP-
denovo, SOAPtrans) generated more contigs containing a
greater total number of bases than the Roche/454 FLX
assemblers (Newbler, MIRA). hile the MIRA assembly ge-
nerated many more long contigs (>6 kb) than SOAPdenovo,
the Trinity assembly out-performed all others in delivering
long contigs, suggesting that the Trinity assembly contained
more useful information than any of the other assemblies
analyzed. While the Roche/454 FLX assemblies and the
Illumina SOAPdenovo assembly produced similar results with
regard to completeness and contiguity, the Illumina Trinity
and SOAPtrans assemblies obtained much higher values for
both parameters indicating that these assemblies comprise
many more nearly complete transcripts (Figures 2 and 3).

Functional annotation of Geraniaceae transcriptomes
A total of 58,461 (49%) and 42,506 (37%) contigs were
annotated from G. maderense and P. x hortorum, respect-
ively. The low percentage of annotated contigs is most likely
due to the large number of total contigs assembled. The
number of aligned and annotated contigs is comparable to
nine other recently published transcriptomes [22,27,51-56].
The number of annotated contigs in assemblies from both
Geraniaceae species was very similar for the three major cat-
egories cellular component, molecular function, and bio-
logical process (Figure 6). This is encouraging since different
tissues were sampled for the two species; only one tissue,
emergent leaves for Geranium and four tissues, emergent
leaves, expanded leaves, roots and flowers for Pelargonium.
Particularly noteworthy is the detection of genes associated
with flower and embryo development and pollen-pistil inter-
action since flowers were not sampled for Geranium. Over-
all, this comparison indicates that there is no marked
improvement in transcriptome breadth of coverage when
sampling four tissues compared to only emergent leaves.

PPR proteins and sigma factors in Geraniaceae
PPRs are a large family of RNA binding proteins encoded
by over 450 genes in sequenced angiosperms. Most are
organelle targeted and involved in regulating organelle
gene expression [57]. Of the two classes (P and PLS)
within the PPR family, those from PLS class (E and DYW
subclasses) have been reported to be involved in RNA
editing [14-16,58-64]. Previous studies have demonstrated
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correlated evolution of PLS genes and RNA editing sites
in plants [17,65]. Consistent with these results, a reduction
in PLS genes (Table 5) in Geraniaceae was detected, where
reduced editing frequency was previously demonstrated [1].
The reduced editing frequency and reduced PPR con-
tent in Geraniaceae is especially intriguing with respect
to the increased mitochondrial substitution rate in this
Table 4 Statistics of transcriptome annotations for
Geranium maderense (GMR) and Pelargonium x
hortorum (PHR)

GMR PHR

Total contigs 119,217 114,762

Aligned contigs 76,332 56,283

Annotated contigs 58,461 42,506

Assigned GO terms 311,108 222,765

Assigned EC 25,533 19,354

Contigs with EC 20,337 15,252

GO = Gene Ontology; EC = Enzyme Code.
family. Although an inverse correlation between editing fre-
quency and substitution rate has been noted previously in
Geraniaceae and other taxa [1,66-68], the finding that PPR
gene content is also reduced in Geraniaceae indicates that
this family is ideally suited for future studies assessing the
evolutionary dynamics of editing frequency, PPR content,
and mitochondrial substitution rates.
One long-standing question regarding the plastid

genomes in Geraniaceae is the putative loss of the rpoA
gene from P. x hortorum [69-71]. The complete plastid
genome sequence of this species revealed several rpoA-like
open reading frames (ORFs) that are highly divergent
relative to rpoA genes in other angiosperms or even
other Geraniaceae [11,12]. Two alternative explanations
were suggested for these observations: (1) a copy of the
gene in the nucleus had gained functionality; or (2) at
least one of the highly divergent rpoA-like ORFs remains
functional. Extensive evolutionary rate comparisons of
plastid genes across the Geraniaceae revealed that the
other three PEP subunits (rpoB, rpoC1, rpoC2) have



Figure 6 Gene ontology assignments for Geranium maderense (GMR) and Pelargonium x hortorum. The proportion of annotated contigs
in all categories with >1% representation within the ontology (GO) categories for cellular component, molecular function, and biological process.
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significantly elevated nucleotide substitution rates and
have likely experienced positive selection [8,9]. Despite
exhaustive searching of the nuclear transcriptome of
P. x hortorum no copy of the rpoA gene was detected.
However, intact copies of all six sigma factors, which are
required for PEP to function [72], were identified in the
transcriptome. The holoparasite Phelipanche aegyptiaca
lacks a functional PEP and mining unigene files published
in a recent transcriptomic study of parasitic plants [20]
failed to uncover a single sigma factor suggesting that in
species where PEP sequences are lost from the plastid the
requisite sigma factors are also absent from the nuclear
transcriptome. The identification of all six sigma factors in
the P. x hortorum transcriptome supports the likelihood
that PEP is active in P. x hortorum plastids.

Conclusions
With the widespread application of NGS techniques, the
ability to process and analyze massive quantities of se-
quence data in a timely manner becomes imperative to a
successful project. Regardless of the goals of a particular
project, it is desirable to obtain data that is as accurate
and complete as possible in a way that is cost effective as
well as timely. In this study a cross-platform comparison
of de novo transcriptome assembly was conducted using
representative species from the two largest genera of



Table 5 PPR proteina and sigma factorb distribution

Arabidopsis
thaliana

Geranium
maderense

Pelargonium x
hortorum

PPR proteins 429 523 315

P class 238 387 262

PLS-E class 105 96 22

PLS-DYW class 86 40 31

Sigma factors 6 10 6

Sig 1 1 1 1

Sig 2 1 4 1

Sig 3 1 1 1

Sig 4 1 1 1

Sig 5 1 3 1

Sig 6 1 1 1
aPPR protein data of Arabidopsis are from Small and Peeters [92]. The PPR class
represents the number contigs longer than 150 aa, which is the minimum
length of PPR proteins identified in Arabidopsis. bThe number of total contigs
and the number of intact contigs aligned to the reference sigma factors are
shown. Intact contigs are those with start/stop codons on 5′ and 3′ ends, and
without any internal stop codons.
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Geraniaceae, G. maderense and P. x hortorum. As no ref-
erence genome is available for Geraniaceae, or any of
its close relatives, this approach represents a truly de
novo assembly allowing evaluation of efficacy among
the platforms/assemblers that more closely resembles
current NGS research. The assembly of Illumina Hiseq
2000 reads with Trinity or SOAPtrans was highly effective
in reconstructing, as completely as is currently feasible,
the protein-coding transcripts of Geraniaceae. As for the
differences between the two assemblers, Trinity generated
slightly more single contiguous contigs and reconstructed
more reference genes with a combination of multiple
contigs, while SOAPtrans ran much faster than Trinity.
These differences in contiguity and completeness became
more obvious with the reduced set of input data (1/40th in
this case). These findings recommend the Illumina plat-
form with Trinity assembly to obtain the most complete
gene coverage by a single contig, especially when a small
amount of reads are available. In instances where a large
amount of data is available and there are limited com-
putational resources, Illumina SOAPtrans assembly
Table 6 Sequence identities between intact contigs in Gerani

Arabidopsis thaliana Geranium maderense

Sequence identity (%)a Nucleotide A

Sig 1 64.5 52

Sig 2 62.6 48

Sig 3 57.7 39

Sig 4 58.6 42

Sig 5 64.3 54

Sig 6 58.6 41
aIn cases where there is more than one intact contig for a sigma factor, the one wit
may be preferred as it generated a relatively complete
assembly much more quickly than Trinity. Furthermore,
evaluation of the amount of Illumina sequence data re-
quired for generating a complete transcriptome is approxi-
mately 60 million reads.
Geraniaceae organelle genomes have been shown to

exhibit a number of unusual features relative to other
angiosperms, including highly accelerated rates of nu-
cleotide substitutions in both mitochondrial and plastid
genes [1,8,9], reduced RNA editing in mitochondrial ge-
nomes [1] and highly rearranged plastid genomes
[10-13]. This comparative transcriptome analysis of G.
maderense and P. x hortorum detected a reduction in
PPR proteins associated with RNA editing, which corre-
sponds with reduced RNA editing in the mitochondria.
Examination of nuclear encoded, plastid targeted sigma
factors required for PEP function supports the hypoth-
esis that PEP is active in P. x hortorum plastids, possibly
incorporating the product of at least one of the highly
divergent rpoA-like ORFs in the plastid genome.

Methods
RNA isolation
Plant tissues were collected from live plants grown in
the University of Texas (UT) greenhouse and frozen in
liquid nitrogen for two species from different genera of
Geraniaceae, Geranium maderense and Pelargonium x
hortorum cv ringo white. For Pelargonium leaf and in-
florescence samples were collected. Leaves were of two
developmental stages, newly emerged and fully ex-
panded. Entire inflorescences were harvested prior to
anthesis. Root samples of P. x hortorum were harvested
from specimens grown aseptically in agar media. For Ge-
ranium, only emergent leaves were collected. Total RNA
was isolated separately from each sample type by grinding
in liquid nitrogen followed by 30 min incubation at 65°C
in two volumes of extraction buffer (2% Cetyltrimethylam-
monium bromide, 3% Polyvinylpyrrolidone-40, 3% 2-
Mercaptoethanol, 25 mM Ethylenediaminetetraacetic acid,
100 mM Tris(hydroxymethyl)aminomethane-HCl pH 8,
2 M NaCl, 2.5 mM spermidine trihydrochloride) with vor-
texing at 5 min intervals. Phase separation with
aceae and Arabidopsis thaliana sigma factors

Pelargonium x hortorum

mino acid Nucleotide Amino acid

.4 61.1 50.4

.9 62.5 47.1

.9 58.6 43.3

.6 58.3 43.5

.1 65.8 55.0

.1 59.6 42.4

h highest sequence identity to Arabidopsis was selected for comparison.
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chloroform:isolamyl alcohol (24:1) was performed twice
and the aqueous phase was adjusted to 2 M LiCl. Sam-
ples were precipitated overnight at 4°C and total RNA
was pelleted by centrifugation at 17,000 × g for 20 min
at 4°C. RNA pellets were washed once with 70% ethanol
and air dried at room temperature. Following resus-
pension in RNase free water, RNAs were analyzed by
denaturing gel electrophoresis and by spectrophotometry.
For Pelargonium, the four tissue types were pooled in
equimolar ratio. All RNAs were treated with DNase I
(Fermentas, Glen Burnie MD, USA) according to the
product protocol. DNase I was removed from the solution
by extraction with phenol:chloroform:isoamyl alcohol
(25:24:1) and the aqueous phase was adjusted to 0.3 M
sodium acetate. RNA was precipitated with 2.5 volumes of
cold absolute ethanol for 20 min at −80°C. Pellets were
washed with 70% ethanol, air-dried and resuspended in
water to 1 μg μL-1. Total RNA sample aliquots were frozen
in liquid nitrogen and shipped on dry ice to the Beijing
Genomics Institute (BGI) in Hong Kong or delivered to the
Genome Sequencing Analysis Facility (GSAF) at UT. Con-
firmation of sample quality and concentration was con-
ducted at each facility using the Agilent 2100 Bioanalyzer
instrument (Agilent Technologies, Santa Clara CA, USA).

Illumina sequencing
Sample preparation for Illumina sequencing was performed
at BGI according to Illumina’s protocol (Part # 1004898
Rev. D). Total RNA was treated with the Ribo-Zero™ rRNA
Removal Kit (Epicentre Biotechnolgies, Madison WI, USA)
prior to fragmentation and priming with random hexamers
for first strand cDNA synthesis using SuperScript® III
Reverse Transcriptase (Invitrogen, Beijing, China). Second
strand cDNA synthesis was carried out using RNase H
(Invitrogen) and DNA polymerase I (New England Bio-
Labs, Beijing, China). The resulting cDNA fragments were
purified with QIAQuick® PCR extraction kit (Qiagen,
Shanghai, China) and normalized with Duplex-Specific
thermostable nuclease (DSN) enzyme from Kamchatka
crab (Evrogen, Moscow, Russia) according to the protocol
outlined by Invitrogen (Part # 15014673 Rev. C). End re-
pair and adenylation of the normalized cDNA library was
followed by ligation to the paired-end (PE) sequencing
adapters. Following gel electrophoresis for size selection
(180–220 bp) the library was PCR amplified for sequen-
cing using the Illumina HiSeq™ 2000. The PE library was
sequenced for 101 bp.

Roche/454 FLX sequencing
The method for cDNA library construction and normal-
ization was based on that of Meyer et al. [73]. Briefly, total
RNA was reverse-transcribed using oligo-dT coupled to a
PCR-suppression primer. The reverse complement of this
primer was incorporated at the 3′ end of the first-strand
cDNA using the template switching capability of the
SuperScript II Reverse Transcriptase (Invitrogen). Duplex-
specific nuclease was added to digest the abundant
double-stranded cDNA. After purification, PCR was
performed, and the product was purified and sheared
by nebulization. The fragmented DNA was then end-
repaired and ligated to Roche Rapid library adaptors
using the NEBNext® Quick DNA Sample Prep Master
Mix Set 2 and NEBNext® DNA Sample Prep Master
Mix Set 2 (New England BioLabs). Final library size and
concentration were measured on the Agilent BioAnalyzer
and by qPCR before sequencing on the Roche/454 FLX
sequencer.

Read pre-processing
Raw reads were preprocessed to eliminate contaminant
and low quality sequences. Filtering of Illumina Hiseq 2000
reads included the removal of low quality bases, reads
where (poly) adenosine constitutes more than 6% of bases,
and reads containing specialized features such as adaptors
and other artifacts arising from library construction.
Roche/454 FLX reads were preprocessed by removing
reads shorter than 50 bp and reads with artificial sequences
based on a vector reference file. The complete data set
is available at NCBI Sequence Read Archive (Accession
numbers SRA059171 for Geranium and SRA053016.1
for Pelargonium).

Ribosomal RNA content and Illumina library complexity
Ribosomal RNA (rRNA) contigs were identified using
reciprocal blast of rRNA from Arabidopsis (5.8S, 18S
and 25S from nucleus, 5S, 16S and 23S in chloroplast,
and 5S, 18S and 26S in mitochondria) as reference. The
rRNA sequences from Arabidopsis were downloaded
from TAIR [74]. Ribosomal RNA reads were removed
prior to the library complexity analysis. Due to a lack of
nuclear genome sequence, the remaining reads were
mapped back to the whole transcriptome data using
bowtie2 [75]. The mapping results were sorted using
samtools [76] and then analyzed with MarkDuplicates
module of Picard [32].

Assembly
Transcritpome assemblies were initially performed on
Pelargonium using a variety of assemblers to compare the
efficacy of different platforms and assemblers. After these
initial comparisons, all subsequent assembles were per-
formed on both Geranium and Pelargonium using Trinity
and Illumina data. For assembly of clean Illumina reads,
Trinity [77], SOAPdenovo and SOAPtrans (http://soap.gen-
omics.org.cn/SOAPdenovo-Trans.html) [78,79] were used.
Trinity, released on 2011-08-20 (http://sourceforge.net/pro-
jects/trinityrnaseq/), was run with parameters “–seqType fq
–CPU 10 –paired_fragment_length 200 –run_butterfly” on

http://soap.genomics.org.cn/SOAPdenovo-Trans.html
http://soap.genomics.org.cn/SOAPdenovo-Trans.html
http://sourceforge.net/projects/trinityrnaseq/
http://sourceforge.net/projects/trinityrnaseq/
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a 24-core 3.33 GHz linux work station with 1 TB memory
at the Texas Advanced Computing Center (TACC, http://
www.tacc.utexas.edu/). The assembly was split into three
steps according to the provided script trinity.pl released
with the software. The split scripts run the corresponding
three steps in Trinity: inchworm, chrysalis, and butterfly.
The parameters were the same for each step, and each
step picked up the previous step’s output as input and
processed it. The scripts will be provided by JZ upon re-
quest. The SOAPtrans assembly was run with the parame-
ters “kmer = 61, max_rd_length = 100, avg_ins = 200” on
the same server as that of Trinity. For SOAPtrans kmer
lengths from 23 bp to 81 bp were explored; 61 bp was se-
lected because it generated the best contiguity compared
with other kmer values. The SOAPdenovo assembly was
done at BGI on a 48-core 2.67 GHz Linux workstation
with 50 GB memory with parameters “Kmer = 41, insert
size = 200, overlap threshold = 50” for assembly, and
“Kmer + 1” to fill the gaps. The generated fasta file was
postprocessed by BGI to remove the sequences shorter
than 150 bp. Assembly of Roche/454 FLX utilized MIRA
[80] and Newbler [81]. MIRA 3.4.0 for a 64-bit linux sys-
tem (http://sourceforge.net/projects/mira-assembler/
files/MIRA/stable/) was released on 2011-08-21. MIRA
was run with parameters “–job = denovo, est, accurate,
454 –fasta 454_SETTINGS” on a 12-core 3.33 GHz linux
work station with 24 GB memory at TACC. Newbler 2.6
accompanies the Roche/454 FLX platform and assembly
was conducted at UT GSAF on 24-core 2.40 GHz linux
work station with 64 GB memory using the parameters
“runAssembly -cpu 8 -urt -cdna –vt vector.fa”.

Comparative analysis of assemblies
Trinity, SOAPdenovo and SOAPtrans assembly output
comprised a single contig file each and these were used
in the analyses. Unpadded fasta files were selected from
the MIRA output and the isotig file was selected from
the Newbler output for use in analyses.
The initial assembly quality was evaluated using the

following metrics: number of assembled contigs, maximum,
minimum and mean contig length, N50 and redundancy.
Initial assembly statistics and contig length distribution
analysis was done by custom perl scripts and MATLAB
version R2011b. Contig clustering and removal of redun-
dant contig sequences was performed using CD-HIT [82].
CD-HIT version 4.5.4 (downloaded from http://code.
google.com/p/cdhit/downloads/list) was executed using
parameters “cd-hit -c 1.0 -n 5 -T 12” for cDNA se-
quences and “cd-hit-est -c 1.0 -n 10 -T 12” for protein
sequences. Redundancy was calculated from the difference
between the number of contigs before and after clustering.
Maximum, minimum, and mean contig length, N50 and
total bases were calculated from the contigs after cluster-
ing and removal of those contigs < 200 bp.
The assemblies were aligned to two published reference
databases: 357 ultra-conserved ortholog (UCO) coding
sequence [35] from Arabidopsis (sequences available at:
http://compgenomics.ucdavis.edu/compositae_reference.
php), and a list of 959 single copy nuclear genes shared
between Arabidopsis, Oryza, Populus, and Vitis [36] using
BLASTX with evalue of 1 E-10. Contig alignment to the
reference databases utilized the standalone BLAST + [83]
program for 64-bit linux system (ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/blast+/LATEST/). The parameters for
BLAST+DNA alignment were “blastn -task blastn -evalue
1 E-10 -word_size 11 -outfmt 6 -num_threads 12”. Pa-
rameters for protein alignment were “blastp -task
blastp -num_threads 12 -outfmt 6”. For blastp, two
different e values were used, 1 E-10 and 1 E-20, in
order to address the generality of the results. Multiple
sequence alignment was done by muscle [84]. Muscle
for 64-bit linux system (http://www.drive5.com/muscle/
downloads.htm) was used with default parameters.
The local reference database for identifying the open

reading frames contained four proteomes downloaded from
Phytozome (http://www.phytozome.net/search.php): Citrus
clementina, C. sinensis, Eucalyptus grandis and Arabidopsis
thaliana. Contigs were translated by alignment to the local
database using blastx to identify open reading frames. The
blastx parameter was “blastx -evalue 1e-6 -max_target_Seqs
1 -num_threads 48 –outfmt’6 std qframe”. The reading
frame parameter was added to the output in order to facili-
tate the following analysis. The aligned regions of contigs
were translated, extracted, and then extended by translating
the contigs in both directions according to standard codon
usage until a stop codon was encountered. The translated
contigs were clustered again using CD-HIT at a threshold
of 100% and all other parameters used the default settings.
Two parameters, contiguity and completeness as described
by Martin and Wang [85] were used to evaluate the align-
ment results. Briefly, contiguity is defined as the percentage
of the reference transcripts covered at some arbitrary cover-
age threshold by a single longest contig. Completeness is
defined as the percentage of the reference transcripts
covered at a threshold by multiple assembled contigs (Box
one in [85]). In this study a range of thresholds up to 100%
was evaluated, and 80% was selected as the threshold for
both contiguity and completeness calculations. Both
parameters were calculated with protein sequence align-
ment, and the alignment results were analyzed using
custom perl scripts available from JZ upon request.

Evaluation of assemblies with different proportion of reads
To assess how much data (number of reads) is needed
to construct the complete transcriptome, different propor-
tions of sequencing data ranging from 5% to 100% were ex-
tracted for both species. The extracted reads were
assembled with Trinity using the parameters described

http://www.tacc.utexas.edu/
http://www.tacc.utexas.edu/
http://sourceforge.net/projects/mira-assembler/files/MIRA/stable/
http://sourceforge.net/projects/mira-assembler/files/MIRA/stable/
http://code.google.com/p/cdhit/downloads/list
http://code.google.com/p/cdhit/downloads/list
http://compgenomics.ucdavis.edu/compositae_reference.php
http://compgenomics.ucdavis.edu/compositae_reference.php
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
http://www.drive5.com/muscle/downloads.htm
http://www.drive5.com/muscle/downloads.htm
http://www.phytozome.net/search.php
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above. Extraction and assembly were repeated three times
for each proportion except 100%, and the assembly statis-
tics (contig number, contiguity and etc.) were averaged.
Basic statistics and assembly parameters such as contigu-

ity and completeness were calculated using the same local
database described above. To determine how well the
assemblies cover a complete transcriptome, the custom
Arabidopsis protein database was constructed by extracting
all Arabidopsis proteins from Uniprot/Swissprot database
[86], and protein sequences with name “hypothetical” or
“predicted” were discarded. The assemblies were aligned
with the database using BLASTX with an E-value of 1 E-10.

Orthologous genes identification
Orthologous genes between transcriptomes of G. mader-
ense, P. x hortorum and A. thaliana were identified with
reciprocal blast with parameters “blastp -task blastp -num_
threads 12 -max_target_Seqs 1 -evalue 1e-10 -outfmt = '6
std qlen slen”. Blast results were analyzed with custom
perl scripts.

Functional annotation
The assemblies were aligned with the NCBI nr database
using BLASTX with an E-value of 1 E-6 and taking the
best 10 hits for annotation. The blast results were used
to annotate each sequence with gene ontology (GO) terms
using Blast2GO [87-89]. To improve the efficiency of an-
notation, local blast2go database was downloaded (http://
www.blast2go.com/b2glaunch/resources/35-localb2gdb).
GO terms were mapped to the reduced GO-slim (plant)
ontology to get a broader functional representation of the
transcriptome.

Identification of selected organelle targeted genes
PPR proteins were searched for using HMMER [90,91]
with previously established PPR motif alignment files
[92]. Transcript sequences with more than one PPR motif
were considered PPR genes. Sigma factor protein sequences
from Arabidopsis were downloaded from TAIR [74] and
used as reference. Sigma factor structure and conserved
domain information were obtained from previous studies
[93-95]. Putative transit peptides were predicted with
targetP [96,97]. Orthologs from two transcriptomes of
G. maderense and P. x hortorum were identified by re-
ciprocal blast at E-value 1 E-10.

Additional files

Additional file 1: Contiguity and completeness of different protein
data sets at E-value 1 E-10 (1/40th of the Illumina data was used
by Trinity).

Additional file 2: Transcriptome annotation for Geranium
maderense and Pelargonium x hortorum.
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