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Abstract

further characterization of the UCN mechanism.

mutants displayed an additive phenotype.

Background: The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis.
For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the
layer (planar growth), thereby propagating the layered epidermal structure. Little is known about the
developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis
AGC VIII protein kinase UNICORN (UCN) maintains planar growth by suppressing the formation of ectopic
multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this
process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS) protein, a
member of the KANADI (KAN) family of transcription factors, thereby repressing its activity. Here we report on the

Results: Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of
the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did
not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5:GUS, respectively.
Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on
callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited
more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple

Conclusions: These data deepen the molecular insight into the UCN-mediated control of planar growth during
integument development. The presented evidence indicates that UCN downstream signaling does not involve the
control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS independently of an ATS/
ETT complex required for integument initiation and they further emphasize the necessity to balance UCN and ATS
proteins during maintenance of planar growth in integuments.

Keywords: Arabidopsis, Auxin, ABERRANT TESTA SHAPE, AGC protein kinase, AUXIN RESPONSE FACTOR 4, Cell division,
Cytokinin, ETTIN, Growth regulation, KANADI, Planar growth, Ovule, Signal transduction, UNICORN

Background

In plant tissue morphogenesis the control of cell division
patterns is crucial for the establishment and propagation of
tissue layers. Spatially restricted asymmetric cell divisions
frequently generate new cell layers. Subsequently, symmet-
ric cell divisions maintain a cell layer, often by aligning the
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division planes along the plane of the layer (planar growth).
The regulation of asymmetric cell divisions is under intense
scrutiny [1-5]. By contrast, the developmental control of
planar growth is largely unknown [6].

There is evidence for a link between the control of
adaxial-abaxial polarity and the laminar growth of the
leaf blade. Leaves are lateral determinate organs and are
characterized by a distinct adaxial-abaxial or dorsal-
ventral polarity across the whole multi-layered organ.
Outgrowth of the developing leaf lamina is believed to
require stimulation of cells located at the adaxial-abaxial
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boundary [7]. The control of adaxial-abaxial leaf polarity
relies on the antagonistic interactions between Class III
HD-ZIP and KANADI (KAN) transcription factors [8,9].
Class III HD-ZIP genes promote adaxial identity [10-13]
and KAN genes, in conjunction with auxin response fac-
tor genes ETTIN (ETT) and ARF4, direct abaxial cell fate
and lamina outgrowth in leaves [10,14-16]. Interestingly,
defects in the control of adaxial identity can result in
localized ectopic blade-like outgrowths on adaxial sur-
face of affected leaves [13,17]. Similarly, it has been
observed that misregulation of abaxial leaf polarity can
lead to ectopic blade-like outgrowths on the abaxial side
of leaves and cotyledons [18,19].

Evidence for a connection between the regulation of
adaxial-abaxial polarity and planar growth also comes
from studies using Arabidopsis integuments as model
system [20,21]. Integuments are lateral determinate
tissues of ovules and the progenitors of the seed coat.
Arabidopsis ovules develop an inner and outer integu-
ment of entirely epidermal origin [22,23]. Upon
initiation they form laminar extensions of distinct
adaxial-abaxial polarity each consisting of two cell layers
of anticlinally dividing cells. The outer integument will
grow asymmetrically and eventually envelop the inner
integument and the developing embryo sac.

Recently it was discovered that maintenance of planar
growth of integuments is under control of UNICORN
(UCN) [20,21]. UCN encodes a functional protein kinase
that belongs to the AGC2 subclass of the plant-specific
AGC VIII family [24-27]. Integuments of recessive ucn
mutants exhibit local disorganized growth resulting in
the formation of one to several multicellular protrusions
containing cells with at least partial integument identity.
Similar protrusions are also present on stamens and
petals. At the cellular level, the earliest detectable defects
are local periclinal or oblique cell divisions in individual
cell layers. They are clearly distinct from the typical anti-
clinal cell divisions that maintain planar growth of inte-
guments. In addition, ucn proembryos show altered cell
division planes and double mutants carrying null alleles
of UCN and its closest homolog UNICORN-LIKE
(UCNL) are embryo lethal. These observations indicated
that L/CN suppresses ectopic growth by influencing div-
ision planes in symmetrically dividing cells.

UCN maintains planar growth during integument out-
growth by interacting with ABERRANT TESTA SHAPE
(ATS) [21]. ATS is a KAN gene required for several pro-
cesses of integument development including, integument
boundary formation, inner integument outgrowth and
the control of adaxial-abaxial polarity [28-31]. In
addition, the ATS protein appears to form a functional
complex with the auxin response factor ETTIN (ETT)
[32] to control early integument development [33]. Pro-
trusion formation in integuments of wucn ats double
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mutants is strongly diminished indicating that UCN
represses ATS [21]. This negative regulation is likely to
occur through physical interaction of the two proteins as
ATS transcript levels are unaltered in ucn mutants and
recombinant UCN protein is able to phosphorylate ATS
in in vitro kinase assays. Moreover, bimolecular fluores-
cence complementation (BiFC) analysis further supports
direct physical interaction between UCN and ATS [21].
Thus, by inhibiting ATS UCN appears to prevent misre-
gulation of transcriptional programs that control planar
growth in integuments.

Here we further characterize /CN-mediated mainten-
ance of planar growth during integument development.
We provide evidence that L/CN functions in an organ-
specific manner and that LJCN does not influence auxin
and cytokinin homeostasis. Our data further suggest that
UCN and ATS protein levels must be balanced and that
repression of ATS by UCN does not involve either ETT
or the ATS/ETT complex.

Results and discussion

UCN functions in an organ- not a whorl-specific manner
in floral organogenesis

Flowers carry four different types of floral organs
arranged in whorls. In Arabidopsis, sepals occupy whorl
1, petals whorl 2, stamens whorl 3 and carpels including
the ovules whorl 4 [34]. According to the ABC model
floral organ identity is specified at the whorl level by a
set of floral homeotic genes, encoding mostly MADS-
domain transcription factors, that act in a combinatorial
fashion [35-37]. Interestingly, ucn mutants show protru-
sions in petals, stamen and ovules (Figure 1B, Figure 2B)
[21], however, we never observed protrusions on sepals
or carpels. This observation raised the question whether
UCN acts in an organ- or whorl-specific manner.

To address this issue we generated a set of double
mutants between wucn-1 and several floral homeotic
mutants (Figure 1). Flowers of apetala3 (ap3) mutants
carry sepals in whorl 2 and carpels in whorl 3 [38]. The
second whorl sepals of ucn-1 ap3-3 flowers did not show
ucn-like protrusions (Figure 1D), although the second-
whorl petals of ucn-1 mutants do, providing first evidence
that LCN acts in an organ and not a whorl-specific man-
ner. To test this assumption further we analyzed two add-
itional combinations. Plants with a defect in AGAMOUS
(AG) exhibit petals in the third whorl and an additional
flower in the fourth whorl [38]. Third-whorl petals of ucn-1
ag-1 still showed protrusions (Figure 1F). In apetala2 (ap2)
mutants unfused carpels with ovules and stamens develop
in the first whorl and second whorl, respectively [38-40].
Flowers of ucn-1 ap2-8 double mutants were characterized
by first-whorl carpels devoid of protrusions but that
included ucn-like ovules (Figure 1H). Thus, in particular
the phenotypes of ucn-1 ap3-3 and ucn-1 ap2-8 flowers
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first-whorl ovules carry protrusions. Scale bars: 0.5 mm.

Figure 1 Phenotypic analysis of ap3 ucn, ag ucn and ap2 ucn flowers. Light micrographs of stage 14 flowers. Arrows indicate protrusions,
arrowheads indicate absence of protrusions. (A) Wild-type (Ler). (B) ucn-1. Note the presence of protrusions on petals and stamens but their
absence on sepals. (C) ap3-3. One first-whorl sepal was removed to reveal the inner second-whorl sepal. The star indicates a first-whorl sepal.
(D) ap3-3 ucn-1 double mutant. Similar setup as in (C). Note the absence of protrusions on the second-whorl sepal. Serrations at the tip of the
second-whorl sepal regularly occur in ap3-3 single mutants. (E) ag-1 flower. Star indicates a fourth-whorl sepal. (F) ag-1 ucn-1 double mutant.
Protrusions are found on second- and third-whorl petals. (G) ap2-8. First-whorl unfused carpels with ovules are visible. (H) ap2-8 ucn-1. The

ap2-8 ucn- 1.

suggest that UCN acts in an organ-specific rather than
whorl-specific manner in floral organogenesis.

Outgrowths in ucn-1 integuments develop autonomously
of auxin and cytokinin
The maintenance of plant tissue morphogenesis and the
prevention of aberrant growth and tumor formation is
under hormonal and genetic control [41-43]. For example,
callus formation can be induced at non-wounding sites in
explants by in vitro auxin and cytokinin treatment [44,45]
resulting in masses of partially dedifferentiated cells that re-
semble root meristem tips [46-48]. Furthermore, defects in
PROPORZI (PRZI), encoding a putative component of a
chromatin-remodeling complex, result in callus formation
upon addition of auxin or cytokinin [49]. In addition, ec-
topic expression of AINTEGUMENTA (ANT), encoding an
AP2-class transcription factor involved in the control of cell
division and organ initiation [50-57], results in unorganized
cell proliferation in wounded or detached ends of fully
differentiated leaves [58]. ANT acts downstream of auxin
and regulates meristematic competence during organogen-
esis [58,59].

To explore the relationship between L/CN and auxin as
well as cytokinin we tested whether the integument protru-
sions of ucn-1 expressed the well-characterized reporters

DRSrev::GFP or ARRS::GUS that act as proxies for the pres-
ence of auxin and cytokinin, respectively [60,61]. We
observed DRS5rev::GEP signal distribution as reported previ-
ously in developing ovules, such as the tip of the ovule
primordium or the micropylar end of the young embryo
sac [61,62]. Interestingly, however, no signal could be seen
in variably advanced protrusions of ucn-1 integuments
(Figure 3A-D). ARRS::GUS expression could be observed in
the tip of filaments as noted earlier [63]. During ovule de-
velopment we could also detect a signal in the developing
embryo sac. The latter signal is in accordance with the ex-
pression pattern of the IPT1::GUS reporter, using the pro-
moter of a cytokinin biosynthesis enzyme [64,65], and the
synthetic cytokinin reporter TCSpro::GFP [65,66]. However,
we did not observe ARRS::GUS signal in developing protru-
sions of ucn-1 integuments (Figure 3E-H). These results
suggest that ucn-1 integument protrusions do not accumu-
late auxin or cytokinin, at least not to a level or in a fashion
detectable by these two reporters.

To assess further the relationship between UUCN and
auxin as well as cytokinin we tested whether L/CN influ-
ences callus formation in seedlings treated with exogen-
ous auxin and cytokinin. However, when comparing
wild-type and ucn-1 seedlings grown on callus inducing
medium (CIM) we detected no difference in size or
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ucn-1 sk21-D

Figure 2 Ovules of ucn-1 sk21-D mutants show enhanced protrusion formation. Confocal micrographs of early stage 4 ovules stained with
pseudo-Schiff propidium iodide (mPS PI) are shown. Arrows indicate protrusions. (A) Wild-type ovule (Ler). (B) ucn-1 ovule. Note the presence of a
protrusion. (C) sk21-D/+ ovule. A small protrusion is indicated. (D) sk21-D ovule. (E, F) ucn-1 sk21-D ovules. (E) Note the prominently enlarged
protrusion (compare with B, D). (F) Multiple protrusions are detectable. Scale bars: 20 um.

sk21-D/+

ucn-1 sk21-D

number of formed calli (Figure 31, J) (n = 25). Thus, it
appears that UUCN does not affect hormone-induced
callus formation in this assay.

The reporter-based experiments described above need
to be interpreted with caution. Still, the results are also
in accordance with previous genetic data. For example,
the additive ovule phenotype of ucn bell double mutants
[21] further supports the notion that ucn integument
protrusions develop autonomously of auxin. BELI
encodes a homeodomain transcription factor required
for chalaza development [20,67-69]. Plants lacking BELI
activity develop ovules carrying large protrusions eman-
ating from the chalaza. Interestingly, young protrusions
of bell ovules show ectopic expression of a PINI::PINI:
GFP reporter [65], used to assess the presence of the
polar auxin transport facilitator PIN1 [70,71]. Further-
more, bell mutants treated with the polar auxin trans-
port inhibitor N-1-naphthylphthalamic acid (NPA) failed
to form protrusions. These results indicate that auxin
contributes to the formation of bell outgrowths [65]. If
auxin would play a major role in the induction of out-
growth formation in ucn-1 integuments one might ex-
pect enlarged protrusion formation in ucn bell double
mutants. However, this is not the case, as ucn bell
double mutants did not show a noticeable increase in
protrusion size [21]. In addition, protrusion formation
still occurs on petals and stamen in wucn ant double
mutants [21].

Available evidence suggests that cytokinin may be of
little importance for the control of integument out-
growth. Signaling mediated by the three cytokinin recep-
tor genes CRE1, AHK2, and AHK3 [72] appears to be
critical for ovule primordium outgrowth [65] and
embryo sac development [65,73]. However, these genes
appear to play a minor role if any during integument
outgrowth as either no defects in integument develop-
ment [73] or only a frequency of 10 percent of finger-
like ovules lacking integuments [65] were reported in
strong crel ahk2 ahk3 triple mutants. These affected
ovules may have still suffered from defects occurring
during prior primordium outgrowth. The absence of de-
tectable ARR5:GUS expression in wucn-1 protrusions,
consisting of at least partially differentiated integument
cells, may thus reflect the minor role of cytokinin in in-
tegument outgrowth.

Taken together the available evidence suggests that
processes functioning downstream of UUCN growth sup-
pression do not involve the regulation of auxin and cyto-
kinin homeostasis.

Relative levels of UCN and ATS are critical for planar
growth of integuments

The current model states that UCN maintains planar
growth in integuments by directly repressing the activity
of the ATS protein implying that the balance between
UCN and ATS proteins may be crucial in this process.
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Ler; DR5rev..GFP

30 um, (E, F, 1, J) 0.5 mm.

Figure 3 Hormone-induced callus formation is not affected in ucn-1 seedlings and ucn-1 protrusions do not accumulate detectable
DR5rev::GFP and ARR5::GUS reporter signals. (A-D) Confocal micrographs of live wild-type (Ler) and ucn-1 plants carrying the DR5rev:GFP
reporter. Overlays of GFP and bright-field channels. No difference in signal detected between wild-type and ucn-1. (A, B) Stage 2-lll ovules. (C, D)
Stage 3-lll ovules. Note the absence of detectable signal in the ucn-T protrusions (arrows). (E-H) Plants carrying the ARR5:GUS reporter. No
difference in signal detected between wild-type and ucn-1. (E, F) Light micrographs of fixed stage 14 flowers (4 h incubation in GUS staining
solution). Arrowheads indicate signal at the junction between filament and anther. (G, H) Differential interference contrast micrographs of fixed
stage 3-IV ovules (16 h incubation in GUS staining solution). Note the absence of signal in the ucn-T protrusion (outlined). (I) Light micrograph of
a 30-days-old callus grown from germinated wild-type (Ler) seedling grown on callus induction medium (CIM). (J) Light micrograph of a 30-days-
old callus grown from germinated ucn-1 seedling grown on CIM. Callus is of comparable size than the one in (I). Scale bars: (A-D): 20 um, (G, H)

Previously we could show that an about 45-fold increase
of ATS transcript levels within its normal spatial expres-
sion domain in the activation tagging mutant sk21-D
[74] is accompanied by ucn-like protrusion formation in
integuments [21]. This result supports the genetic model
that UCN is a negative regulator of ATS. One interpret-
ation of the sk21-D integument phenotype includes the
assumption that elevated ATS transcript levels lead to
higher than normal amounts of ATS protein, which may
titrate out available UCN. If this notion is correct one
might expect that upon reduction of UCN function even
more exaggerated protrusion formation should take
place in sk21-D plants.

To test this notion we performed a genetic gene dosage
assay (Figure 2, Table 1). Ovules of ucn-1/+ plants do not
show protrusions [21]. Analysis of ovules of sk2I-D/+
heterozygous plants revealed less prominent protrusion for-
mation than in ovules of sk2I-D homozygous plants
(Figure 2C, D). Furthermore, we generated ucn-1 plants
that were either heterozygous or homozygous for sk21-D.
Indeed ovules of these mutants showed an increase in
protrusion formation, both in terms of protrusion size
(Figure 2E) and in number of protrusions formed
(Figure 2F, Table 1). Strongest effects were seen in ucn-1I
sk21-D double mutants. A dosage effect was discernable
as ucn-1 plants heterozygous for sk2I-D showed an
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Table 1 Quantification of protrusion number on ovules of wild-type, ucn-1, sk21-D, and ucn-1 sk21-D mutants

Genotype No. of ovules No. of ovules with only one No. of ovules with >1 % of ovules with
analyzed protrusion protrusions protrusions

WT 200 0 0 0

ucn-1 200 9% 89 92.5

sk21-D/+ 200 11 0 55

sk21-D 200 87 445

ucn-1sk21-D/ 200 93 95 94

+

ucn-1sk21-D 200 34 158 96

intermediate phenotype compared to wucn-1 or wucn-I
homozygous for sk21-D (Table 1).

Taken together these data support the model that ele-
vated transcript levels of ATS can ultimately lead to out-
titration of functional UCN. In addition, they provide
further genetic evidence that it is indeed critical to
maintain a proper balance between UCN and ATS pro-
tein levels in the regulation of planar integument
growth.

UCN acts independently of ETT and ARF4 during
integument development

Genetic studies indicated that AUXIN RESPONSE FACTOR
(ARF) gene ETTIN (ETT) and its closest homolog ARF4
are required for the control of adaxial-abaxial leaf polarity
in conjunction with KANI and KAN2 [16]. Furthermore,

the ETT and ATS proteins may physically interact to form
a functional complex required for integument development
and polarity [33]. Our previous data suggested that UCN
maintains planar growth of integuments by negatively regu-
lating the polarity factor ATS through a physical interaction
between the two proteins [21]. If interaction between ATS
and ETT proteins is crucial for the formation of a func-
tional complex then impairing either protein should result
in similar absence of function. As a consequence ats and
ett should show a similar genetic behavior with respect to
ucn.

To test this hypothesis we generated ucn-1 ett-1 double
and ucn-1 ett-1 arf4-1 triple mutants and analyzed their
ovule phenotypes (Figure 4). In agreement with a repressive
role of UCN on ATS activity ats is epistatic to ucn-1 in
ucn-1 ats-3 double mutants [21]. Ovules of eft-I mutants

"

\ |
uen-tett-1 %\

—

ovule (compare with E). Arrows mark protrusions. Scale bars: 20 um.

Figure 4 Ovules of ucn-1 ett-1 and ucn-1 ett-1 arf4-1 mutants show additive phenotypes. Scanning electron micrographs of early stage 4
ovules are depicted with the exception of (C, F) which show gynoecia of stage 14 flowers. (A) Wild-type ovule. (B) ucn-T ovule. Arrows highlight
protrusions. (C) Typical gynoecium of an ett-1 flower. (D) ett-1 ovule. (E) Additive phenotype of a ucn-1 ett-1 double mutant ovule. Note the
protrusions (arrows). (F) Typical gynoecium of an ett-1 arf4-1 flower. (G) ett-1 arf4-1 ovule. Not noticeably different from an ett-7 ovule

(compare with D). (H) Additive phenotype of a ucn-T1 ett-1 arf4-1 triple mutant ovule. Not noticeably different from a ucn-1 ett-1 double mutant

N




Enugutti and Schneitz BMC Plant Biology 2013, 13:2
http://www.biomedcentral.com/1471-2229/13/2

displayed an ats-like phenotype (Figure 4D) confirming
earlier results [33]. Surprisingly, however, ovules of ucn-1I
ett-1 double mutants (Figure 4D) or ucn-1 ett-1 arfd-1
triple mutants (Figure 4H) exhibited an additive phenotype.
These results suggest that L/CN and ETT/ARF4 function in
different pathways. They further indicate that JCN does
not participate in auxin-related aspects of integument de-
velopment that involve these two auxin response factors.

Interestingly, the additive ovule phenotype of ucn-1 ett-1
double mutants and wucn-1 ett-1 arf4-1 triple mutants seems
not in accordance with the notion of a functional ATS/ETT
complex. How can this apparent discrepancy be resolved?
At least two models are conceivable. In one scenario the
ATS/ETT complex is required throughout integument de-
velopment and UCN inactivates ATS that is not in a com-
plex with ETT. Alternatively, the ATS/ETT complex is
transient and only active during early integument develop-
ment. Sometime after integument initiation the ATS/ETT
complex ceases to be required and dissociates. UCN then
interacts with now available free ATS and represses its ac-
tivity. We favor the latter model as the ATS-dependent pro-
trusions in integuments of ucn-1 or sk21-D mutants first
appear once integuments are initiated and continue to out-
grow [21].

Both models detailed above imply that ATS protein
that is not bound to ETT interferes with the transcrip-
tional programs regulating planar integument growth
and must be repressed. Thus, the new genetic data pre-
sented above are in agreement with and at the same
time refine our current view on the UCN-mediated con-
trol of planar integument growth.

Conclusions

Here we provide genetic data that L/CN acts in an organ-
specific manner during floral development. Furthermore,
the repression of ectopic growth by L/CN-mediated signal-
ing does not appear to involve a control of auxin or cytoki-
nin homeostasis. /CN-dependent growth suppression is
mediated through a repression of ATS and requires a
critical balance of both proteins. This repression is inde-
pendent of a likely earlier-acting ATS/ETT protein complex
involved in integument initiation. The presented evidence
deepens our understanding of {/CN-mediated suppression
of ectopic growth. It furthers the link between the control
of adaxial-abaxial polarity and planar growth and contri-
butes to a solid experimental and conceptual foundation
for further exploration of planar growth control during in-
tegument development.

Methods
Plant work
Arabidopsis thaliana (L.) Heynh. var. Columbia (Col-0)
and var. Landsberg (erecta mutant) (Ler) were used as
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wild-type strains. Plants were grown essentially as
described previously [20]. The following mutants were
used: ag-1 [38,75]; ap2-8 [35], ap3-3 [76], arfd-1
[16,77,78], ett-1 [16,79], sk21-D [74], ucn-1 [20,21]. In
double-mutant studies respective double mutants were
identified based on their phenotypes segregating in a
Mendelian fashion. The ucn-1 sk21-D/+ or ucn-1 sk21-D/
sk21-D plants were genotyped using primers sk21-D
(GT)_F :GAGAATTAGTACAATGTAATG, sk21-D
(GT)_R :GTGATTTAACCCTTCTCAAGTGC and
pSKI (GT)_F: CCACCCACGAGGAACATCGTG.

In vitro culture and hormone treatment

Seedlings were grown in a growth room under constant
light conditions at 23°C. For induction of callus freshly ger-
minated seedlings were grown on MS plates for 6 days.
Seedlings were then transferred onto MS plates supplemen-
ted with 3 pg/ml each of the auxin 1-naphthalene acetic
acid (NAA) (Sigma) and the cytokinin kinetin (Sigma)
(callus induction medium, CIM).

Microscopy and art work

Preparation and analysis of samples for light microscopy,
scanning  electron microscopy, and histochemical
localization of (-glucuronidase (GUS) activity in whole-
mount tissue was done essentially as described [20,80].
Ovule staining with pseudo-Schiff propidium iodide
(mPS-PI) was done as described [81]. Confocal laser scan-
ning microscopy was performed with an Olympus FV1000
setup and FluoView software (Olympus Europa GmbH,
Hamburg, Germany) as described previously [21]. Images
were adjusted for color and contrast using Adobe
Photoshop CS5 (Adobe, San Jose, CA, USA) software.
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