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Abstract

Background: Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of
processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have
been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved
by specific DNA glycosylases, including AtDME (DEMETER) and AtROST (REPRESSOR OF SILENCINGT), which have
been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are
limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal
crop, during seed development and in response to conditions of drought.

Results: An HVDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules
of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other
monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HYDME gene
contains the 5" and 3’ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3’ downstream
region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated
differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally,
remarkable induction of HYDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar.
Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were
detected in two different cultivars.

Conclusion: A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in
barley. Expression analysis during seed development and under dehydration conditions suggested a role for
HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA
methylation patterns within the gene in two different cultivars suggested epigenetic regulation of HYDME. The
study of a barley DME gene will contribute to our understanding of epigenetic mechanisms operating during seed

development and stress response in agronomically important cereal crops.
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Background

Epigenetic regulation during plant development and in
response to environmental conditions is attained by DNA
methylation, histone modifications, small interfering RNAs
(siRNAs) and long non-coding RNAs (Long ncRNAs), lead-
ing to changes in chromatin structure. Open and closed
chromatin states are associated with gene activation and
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gene silencing, respectively, and govern proper onset of
gene expression programmes during different develop-
mental processes and in response to changing environ-
mental conditions [1-3].

A dynamic interplay between DNA methylation and
demethylation accomplished through specific enzymes, is
critical for proper cellular regulation during plant develop-
ment [4,5]. Even though DNA methylation is a relatively
stable epigenetic mark, it is subject to passive or active de-
methylation during the development of an organism [6].
Passive demethylation can occur when methylated cyto-
sines are replaced by non-modified cytosines during DNA
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replication. Active DNA demethylation is achieved by spe-
cific DNA glycosylases through the base-excision-repair
(BER) pathway by hydrolysis of the N-glycosidic bond
between the ribose and the base [5,7,8]. Recent studies in
animals have implicated another mechanism for DNA de-
methylation initiating with the hydroxylation of 5 methyl-
cytosine by TET1 methylcytosine dioxygenase followed by
the BER pathway that leads to DNA demethylation [9-11].
Such a mechanism is not found in plants, thus far. In
plants demethylation by the BER pathway is operated by
DNA glycosylases that excise 5 methylcytosine from the
DNA sugar backbone and cleave the backbone at the aba-
sic site [6]. In Arabidopsis, four such DNA glycosylase
have been described, DEMETER (DME), REPRESSOR OF
SILENCING (ROS1), DEMETER LIKE2 (DML2) and
DEMETER LIKE3 (DML3), also called DME-family DNA
glycosylases. AtDME and AtROS1 are bifunctional DNA
glycosylases/AP-lyases that excise 5-methylcytosine and
subsequently cleave the ribose-base phosphodiester bond
whereas the resulting gap is filled by a DNA polymerase and
the repair process is completed by a DNA ligase [12-15].

DME-family DNA glycosylases (DME, ROS1, DML2,
DML3) have both common and different structural fea-
tures as compared to typical DNA glycosylases. The gly-
cosylase domain of DME-family proteins harbours the
conserved helix—hairpin—helix (HhH) motif and a gly-
cine/proline-rich region followed by a conserved aspartic
acid (GPD) also found in human 8-oxoguanine DNA
glycosylase (hOGGL1), Escherichia coli adenine DNA gly-
cosylase (MutY), and endonuclease III (Endo III) [16-18].
Moreover, similar to MutY and Endo III, DME-family
DNA glycosylases contain four conserved cysteine resi-
dues flanking the DNA glycosylase domain that may func-
tion to hold a [4Fe-4S] cluster in place. Unlike other
members of the HhH DNA glycosylase superfamily,
DME-family members contain two additional conserved
domains (domain A and domain B) flanking the central
glycosylase domain [18]. Mutagenesis analysis of AtDME
has revealed that the conserved DNA glycosylase domain
and flanking domains A, and B, are necessary and suffi-
cient for DME enzymatic activity [18].

Initial reports had implicated A2DME in demethylating
genes of the female gametophyte involved in endosperm
development whereas AtROS1, AtDML2 and AtDML3
were found expressed in vegetative tissues targeting trans-
posons, repetitive elements and small RNA-generating loci
[19-21]. AtDME was originally characterized as an epigen-
etic regulator required for maternal allelelic expression of
the MEDEA (MEA) gene, encoding a H3K27 methylatrans-
ferase, in the central cell and endosperm [12,22,23]. In Ara-
bidopsis, proper embryo and endosperm development
depends on the expression of the maternal allele of the
Polycomb group Polycomb Repressive complex (PRC2)
encoding genes: MEA, FERTILIZATION INDEPENDENT
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ENDOSPERM (FIE), and FERTILIZATION INDEPEND-
ENT SEED?2 (FIS2) [22-24]. MEA, FIE and FIS2 play a role
in preventing the onset of central cell proliferation by
repressing the expression of target genes, among them the
Type-I1 MADS-box gene PHERES1 (PHE1) [23,25,26].

The first reports on global DNA methylation profiling
of endosperm and embryo genomes demonstrated wide-
spread reduction of DNA methylation in the endosperm,
particularly at regions corresponding to TE and small
RNAs [27,28]. These were largely due to AtDME action
in the central cell, the progenitor of the endosperm,
which develops after fusion of the central cell with one
of the sperm cells of the pollen. Though AtDME action
is restricted to the central cell, global demethylation per-
sists in the developing endosperm post-fertilization. It
was proposed that imprinted genes are not specific se-
quences targeted for demethylation but rather the result
of a universal process carried out primarily through the
action of DME that reconfigures DNA methylation of
the entire maternal genome in the endosperm [28]. Re-
cently it was demonstrated that AtDME is responsible
for all of the active DNA demethylation taking place in
the central cell and it preferentially targets small, AT-
rich, and nucleosome-depleted euchromatic transposable
elements [29]. AtDME also demethylates similar se-
quences in the vegetative cell of the male gametophyte
and suppression of AtDME in the vegetative cell causes
reduced small RNA—directed DNA methylation of trans-
posons in its companion sperm cell [29-31].

Unlike the extensive investigations in Arabidopsis,
studies on DNA glycosylases in monocots are limited.
DNA demethylation was shown to result in the activa-
tion of a wide range of protein coding genes as well as
transposable elements in rice endosperm. Interestingly,
knockout mutants of a rice ROSI gene which demethy-
lates retrotransposn TosI7 led to wrinkled seeds as com-
pared to wild type plants, suggesting that rice ROSI is
involved in seed development [32]. Likewise, a null mu-
tation of rice ROS1a leads to abnormal early endosperm
development and nonviable seed [33]. Finally, extensive
efforts to understand and treat gluten-intolerance and
celiac disease in population groups have led to the isola-
tion and genetic engineering of wheat and barley DME
homologues (among other genes) [34-39]. Importantly,
downregulation of wheat DME resulted in decreased ex-
pression of endosperm prolamins, a powerful immunor-
eactant in celiac disease patients [39].

During the past several years our group has studied
genes encoding epigenetic regulators and their putative
targets, during seed development and in response to
stress in barley, an agronomically important cereal crop
[40-48]. In this study we have extended our exploration
of epigenetic regulation in barley, by investigating the
possible role of an HvDME gene, in seed development
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and in response to drought stress in different barley
cultivars.

Methods

Plant material

Seeds for commercial barley cultivars, Caresse, Kos,
Ippolytos and Demetra differing in seed size, weight and
drought tolerance, were kindly provided by the Cereal
Institute at the National Agricultural Research Founda-
tion of Greece (www.cerealinstitute.gr) and were the
source of total RNA and genomic DNA. For Caresse the
weight of 1000 grains is 50—55 gr and 98% of seeds have
diameter longer than 2.5 mm, for Kos the weight of
1000 grains is 36—40 gr and 75% of seeds have diameter
longer than 2.5 mm, whereas for Ippolytos, seeds weight
25-31 gr per 1000 grains and only 35-45% of seeds have
diameter longer than 2.5 mm. Caresse has facultative
growth and is characterized by intermediate tolerance to
abiotic stress/drought whereas Demetra is also a faculta-
tive type cultivar, drought-tolerant and very adaptable to
a variety of soil-climatic conditions. The weight per
1,000 grains is 38—44 g and 70% of seeds have diameter
longer than 2.5 mm (www.cerealinstitute.gr).

Drought experiment

An open hydroponic-type arrangement was used for the
experimental setup consisting of 6 pots from each cultivar
(Caresse and Demetra), which were constantly irrigated
with tap water (pH 6-7). Three seedlings were grown in-
side each pot. Seedlings were allowed to grow for up to
7 days, at which time 3 pots were removed from the
hydroponic setup and placed into separate dry plates.
These were water-withheld for a total of 10 days. The
other 3 pots were used as controls and were kept in well-
watered conditions. Aerial parts from each pot were
pulled together so each biological repeat is represented by
9 plants. Two biological replicates were conducted. The
aerial parts of seedlings were harvested the 3rd and 10th
day and were stored in —80°C until further use.

RNA isolation and first strand cDNA synthesis

Total RNA was isolated from roots, meristems, seedlings,
leaves, flowers before fertilization (immature flowers),
seeds 1-3, 3-5, 5-10, 10-15 days after fertilization (DAF),
using TRI REAGENT 3 (SIGMA) according to the in-
structions of the manufacturer. First strand cDNA synthe-
sis was performed using 1.0 pg total RNA, 0.5 pg 3’
RACE Adapter primer, 5'-5 GGCCACGCGTCGACTAG
TAC (T)17-3" (Invitrogen), 1 mM dNTPs and 200U of
Superscript II (Invitrogen) in 20 uL total volume, accord-
ing to the specifications of the manufacturer.
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Protein sequence analysis

Multiple alignment was created with ClustalW. The phy-
logenetic tree was calculated using MEGA 5.0 software
[49] by the Neighbor-Joining Method with p-distance cor-
rection [50]. Bootstrap values were obtained from 1000
bootstrap replicates. The 3D-structures were predicted
using swiss-model (http://swissmodel.expasy.org/) and visu-
alized with FirstGlance in Jmol (http://oca.weizmann.ac.il/
oca-docs/fgij/slides.htm). Accession numbers of sequences
used for alignments and phylogenetic analysis are indicated
in Additional file 1: Table S1.

Genomic organization

The DME genomic sequences of Brachypodium distach-
yon (Bradi4g08870.1), Oryza sativa (01 g11900.1) and
Zea mays (GRMZM2G123587) were downloaded from
the Phytozome database (http://www.phytozome.net/).
The sequence of HYDME was obtained from GenBank
(BAC 273i4, accession number FM164415.1). Genomic
organization of exons and introns was obtained using
the mRNA-to-genomic alignment Spidey tool, in NCBI
(http://www.ncbi.nlm.nih.gov/spidey). Detection of retroe-
lements was performed with the MASIiVE and LTRharve-
ster tools (http://tools.bat.ina.certh.gr/masive/) (http://tools.
bat.ina.certh.gr/ltrharvester/) and homology was visualized
with Circoletto (http://tools.bat.ina.certh.gr/circoletto/). Sta-
tistically significant prediction for CpG islands was per-
formed using the online predictor, which is part of the
sequence manipulation suite at http://www.bioinformatics.
org/SMS/index.html.

Expression analysis of HYDME in tissues and under
drought

Qualitative RT-PCR and quantitative real-time RT-PCR
was performed with cDNA synthesized from 1 pg of total
RNA from roots, stems, meristems, leaves, immature
flowers, seeds 1-3 DAF, 3-5 DAF, 5-10 DAF, 10-15 DAF
and aerial parts of seedlings after drought treatment. For
real-time PCR, each sample reaction was set up in a PCR
reaction mix (20 pl) containing 5 pl of the 1:50 diluted
c¢DNA, 0.25 pM of each primer and 1x Platinum SYBR
Green qPCR Supermix-UDG (Invitrogen, Paisley, UK)
and using the Corbett Rotor Gene 6000. Each reaction
was performed in triplicate. General thermocycler condi-
tions were 50°C for 2 min, 95°C for 2 min, then 42 cycles
[denaturing at 95°C for 20 sec, annealing at 56°C for
25 sec, extension at 72°C for 25 sec], then 72°C for
10 min. To identify the PCR products a melting curve was
performed from 65°C to 95°C with observations every
0.2°C and a 10-s hold between observations. Relative
quantification was performed using actin as the reference
gene and HvActinF/HvActinR as primers. Primers used in
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expression analysis correspond to non-conserved regions
and are shown in Additional file 2: Table S2.

DNA methylation assays

Genomic DNA was prepared from control and drought-
treated seedlings (Caresse and Demetra) with Qiagen
columns following the protocol of the manufacturer
(Qiagen Plant genomic DNA kit). Cytosine DNA methy-
lation was analyzed by restricting 1 pug of genomic DNA
from each sample with the methylation-dependent en-
zyme McrBC (NEB Biolabs), according to the manufac-
turer’s instructions, and PCR-amplifying equal quantities
of McrBC-treated and untreated samples. Primers used
are shown in Additional file 2: Table S2.

Results

HvDME protein sequence analysis

A gene sequence with accession number FM164415.1
corresponding to a barley HYDME gene from the culti-
var Morex was retrieved from GenBank. This gene se-
quence had been deposited, annotated and described in
GenBank (Langen, G., Pang, J., Brueggeman, R. and von
Wettstein, D., May 2008). The sequence is contained in
the BAC clone BAC 273i4, and encompasses 17 exons
and 16 introns in a total size of 26642 bp. BAC 273i4
also contains 6300 bp 5 upstream from the ATG transla-
tional start and 6735 bp 3'downstream from the TAG
translational stop codon. HVDME harbors 5946 bp of
coding sequence which translates to a putative protein
of 1981 aa. The DME-family amino acid sequences of
Arabidopsis and other cereals were retrieved from the
GenBank and Phytozome (Additional file 1: Table S1)
and an alignment was constructed (Additional file 3).
HvDME has a common structure with the other DME-
type DNA glycosylases in that it harbours a lysine-rich
region at the N-terminus, ensued by Domain A which is
followed by the DNA glycosylase domain [including the
helix-hairpin-helix motif (HhH) and the glycine-proline
rich region flanked by a conserved aspartate (GPD)], the
EndIIl _4Fe-4Se domain and Domain B (Figure 1A and
Additional file 3). HYDME has a high degree of hom-
ology with TaDME2 (AEF38424.1) (96.4% identity),
BADME (Bradi4g08870.1) (77.5% identity), OsDME
(01 g11900.1) (70% identity), and less with ZmDME1
(GRMZM2G123587) (52% identity) and SbDMEIL
(08 g008620.1) (49% identity) (Additional file 3). Near
absolute conservation is observed among cereals in the
region spanning the DNA glycosylation domains and the
the EndIII _4Fe-4Se domain. About 65% similarity exists
between the DNA glycosylation domain of HYDME and
the DNA glycosylation domain of AtDME (Additional
file 3). The tertiary structure of the glycosylase domain
of HYDME and AtDME, respectively, was predicted
using Swissmodel (Figure 1B) and found to be very
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much alike except for a beta-strand loop in the HYDME,
not predicted for the AtDME protein. The spatial orien-
tation of the helix-hairpin-helix, the conserved aspartate
(D), and the adjacent four-cysteine region binding a pu-
tative 4Fe-4S cluster were nearly identical (Figure 1B).

A phylogenetic tree constructed using all known
DME-family sequences from barley, wheat, brachypo-
dium, rice, maize, sorghum and Arabidopsis showed that
HvDME belongs in a cluster with the DME homologues
from other cereals, all being more closely related to the
AtDME, whereas is more distantly related to other DNA
glycosylase members which group together with ROSI,
DML2 and DML3 homologues (Figure 2). Barley homo-
logues of the ROS1, DML2 and DML3 proteins have not
been identified thus far.

Comparative genomic analysis of cereal DME genes

The HYDME gene sequence contained in the BAC clone
BAC 273i4 has a total size of 26642 bp and harbors 17
exons and 16 introns (Figure 3A). HvDME also contains
6300 nt 5'upstream from the ATG translational start
and 6735 nt 3'downstream from the TAG translational
stop codon (Additional file 4 and Additional file 5). The
gene sequences of Brachypodium BdDME (Bra-
di4g08870.1) and rice OsDME (01 g11900.1) also contain
17 exons and 16 introns, respectively. The exons are of
similar sizes whereas some variation is observed among
introns regarding relative size and position (Figure 3A
and Additional file 4). ZmDME (GRMZM2G12358) con-
sists of 16 exons and 15 introns with two large introns,
4, and 14. Using the MASiIVE bioinformatics tool for de-
tection of retroelements (http://tools.bat.ina.certh.gr/
masive/) [51], two sites in the 3’downstream untrans-
lated region of the HYDME gene were found to have a
high degree of similarity with the PTAES_CS_cons_max-
imus Copia Sirevirus retroelement. Specifically, the 5’
LTR region (1437 nt) and the 3'LTR region (1161 nt) of
the PTAES CS_cons_maximus element were detected at
1696 nt and 5540 nt downstream from the translational
stop of HvDME, within 21600-23037 nt and 25444—
26605 nt, respectively (Figure 3B and Additional file 5).
Interestingly, a full length (9591 nt) maize Sirevirus
retrotransposon, Copia Ji, was found to have high simi-
larity with a fragment of intron 14 (from 34003 to 43593
nt) of the maize ZmDMEI (GRMZM2G123587) gene.
Highest homology was with the 5'LTR and 3'LTR re-
gions of the retrotransposon contained in 42135-43593
nt and 34003-35337 nt of the ZmDMEI gene (Figure 3A,
3B and Additional file 4). The Copia Ji retrotransposon
was detected in four more sites of the maize genome as
indicated in Figure 3B which upon further inspection in
Ensemble (http://plants.ensembl.org/index.html) were
found to be intergenic regions.
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(See figure on previous page.)

Figure 1 Schematic view of DME-family DNA glycosylases and predicted tertiary structure of HyDME and AtDME. A) Proteins, HYDME
(FM164415), TaDME (AEF38424.1), BADME (Bradi4g08870), AtDME (NP_196076.2), AtROST (AAP37178.1), AtDML2 (NP_187612.5) and AtDML3
(NP_195132.3) are depicted with white rectangles. White box, lysine-rich region; black box, glycosylase domain; hatched box, A domain; grey box,
B domain; grey hatched box, 4Fe-4S binding domain; H-h-H, helix-hairpin-helix; GPD, glycine-proline rich region and conserved aspartate residue.
B) Left: Amino acid sequence alignment of the glycosylase domain of DME-type proteins. Right: Predicted tertiary structure of HYDME and AtDME
glycosylase domains. Helix-hairpin-helix is indicated with yellow arrows, the conserved aspartate (D) is shown in green and the 4Fe-4S is shown

in orange-yellow.
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Figure 3 Genomic analysis of cereal DME genes. A) Schematic view of cereal HYODME (FM164415), BADME (Bradi4g08870), OsDME (01 g11900.1)
and ZmDME (GRMZM2G123587) genes. Exons are depicted with orange boxes and introns with blue lines. 3" untranslated regions are shown as light
blue lines. Regions within the 3" untranslated region of HYODME and within the intron of ZmDME where retrotransposon sequences were found are
highlighted in red. B) Sequence similarity of HvDME and ZmDME with Copia retrotransposons, visualized in Circoletto (http:/tools.bat.ina.certh.gr/
circoletto/) after blast analysis with MASIVE (http://tools.bat.ina.certh.gr/masive/) and LTRphyler (http://tools.batina.certh.gr/Itrphyler/). Upper circle: Full
length HYDME gene (left); the Copia PTAES_CS_cons_maximus Sirevirus retrotransposon (right). The 5" and 3’ LTR regions of the retrotransposon are
shown with bold black lines. The regions of retrotransposon homology between the LTRs and the 3" downstream region of HVDME are marked in red.
Lower circle: Full length ZmDMET gene (right); the maize Copia Ji Sirevirus retrotransopson element in different chromosomal locations of the maize
genome (left). The ZmDME gene resides at the Zmay_chr_5_D_1618643 site (chromosome 5, sense strand, position 1618643 bp from the
chromosomal start). Regions of homology are shown in red. Coding regions of retrotransposon integrase and reverse transcriptase are in purple and

yellow-green, respectively. Dark-grey and light- grey interconnecting ribbons depict regions of high and low similarity, respectively.

miRNA target analysis for DME from barley and other
cereals
The report that an Arabidopsis DME-family DNA glyco-
sylase homologue, AtDML3, is regulated by the miRNA
miR402 [52], prompted us to perform small RNA target
analysis, in silico, for detecting putative small RNA targets
on the HvDME gene sequences. Similar analysis was per-
formed with the DME gene homologues from Brachypo-
dium and rice using the psRNATarget (Plant small RNA
Target) tool (http://plantgrn.noble.org/psRNATarget).
Inspection of the coding region of the DME genes did
not identify target sites with sufficient complementarity
to plant miRNAs. However, upon examining genomic
sequences, near 100% complementarity was detected be-
tween miRNA HvmiR1126 and intron 15 (16644—19175 nt)
of the HYDME gene sequence (Figure 4). 22 nt out of 23 nt
of miRNA HvmiR1126 matched with the region 16838 nt-
16860 nt of intron 15. Likewise near 100% complementarity
was detected between the Brachypodium miRNA,
BdmiR1122, and intron 15 of the BADME gene and be-
tween the rice miRNA OsmiR1436 and intron 16 of the
OsDME gene (Figure 4).

Expression analysis of HYDME in different tissues and
seed developmental stages
Expression analysis of HYDME was examined in vegeta-
tive and reproductive tissues from the barley cultivar
Kos (a medium seed-size cultivar) by qualitative RT-PCR
(Figure 5). HvDME transcript is detectable in all tissues
examined except from mature leaves and stamens. High-
est expression of HYDME was in seedlings and in seeds
1-3 (DAF) which declined in seeds at 3—5 DAF.
Expression analysis of HYDME in different seed devel-
opmental stages in two different cultivars with different
seed size, Caresse (large-seed) and Ippolytos (small-
seed), was performed by quantitative real time RT-PCR.
In the cultivar Caresse, HYDME expression is higher by
about 2 fold in the 5-10 DAF stage whereas it is lower
by about 4 fold in the 10-15 DAF stage, as compared to
the unfertilized immature flower (IF) (Figure 6). In the
cultivar Ippolytos HvDME expression increased by about
2 fold in the 1-3 DAF seed stage as compared to the

immature flower (IF) whereas in the later seed stages
HvDME expression did not seem to change (Figure 6).

Expression analysis of HvDME in response to drought
stress

Environmental stress such as drought can have import-
ant consequences in proper plant development and seed
yield. The drought response is a complex process involv-
ing the action of different structural genes and gene
transcription factors [53,54]. In addition epigenetic fac-
tors such as histone deacetylases, histone methyltrans-
ferases and demethylases, and miRNAs have been
implicated in the response [44,47,55-58]. Therefore, an-
other epigenetic regulator such as the DME gene may
also be required for regulating the gene expression pro-
grammes participating in drought response. Expression
of HYDME was investigated upon conditions of drought,
in two barley cultivars with different tolerance to drought.
Real-time PCR was employed to examine HvDME tran-
script accumulation in 7-d-old seedlings at 3 and 10 days
after drought treatment in the drought-sensitive cultivar,
Caresse, and the drought-tolerant cultivar, Demetra. A
sound induction of ~ 10 fold was observed for HvDME,
after 10 days of drought in the drought-tolerant cultivar
Demetra as compared to the untreated control plants after
10 days (Figure 7). HvDME transcript levels increased
by ~2 fold after 10 days of drought in the drought-
sensitive cultivar Caresse (Figure 7).

DNA methylation analysis of the HYDME gene

In order to examine the DNA methylation pattern of the
HvDME gene and uncover potential links to gene ex-
pression differences between drought-treated and un-
treated plants, the DNA methylation profile of HYDME
in control and drought conditions was analysed using an
McrBC-PCR assay. McrBC is a methylation-sensitive re-
striction enzyme that cleaves DNA containing methylcy-
tosine on one or both strands, recognizing two half-sites
of the form (G/A)mC. After McrBC treatment, methyl-
ated DNA will be digested and will not be amplified by
PCR, while unmethylated DNA will not be cleaved and
will result in PCR product.
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We analyzed Caresse and Demetra seedlings 10 days
after drought treatment since this tissue showed the high-
est difference in expression (~2 fold and 10 fold increase,
respectively) compared to untreated tissue (Figure 8). Four
regions in the promoter of HYDME (regions 1, 2, 3 and 4),
two coding regions (regions 6 and 7) and a region located
3780 nt upstream from the translation start site (region 5)
were examined. No obvious bands regarding region 1
(=76 to —432 from the ATG start) and region 4 (-1381
to —1781) were detected, indicating that these regions
are cytosine methylated in both cultivars. On the other

hand, the presence of PCR bands for region 2 (-501
to -854) and 3 (-883 to -1167), both being part of a
CpG island, suggests that they are unmethylated. Region
6 (+9 to +755 from the ATG start) containing the 5'end
of exon 1 (747 nt), is methylated in both cultivars as in-
dicated by the absence of PCR products. Interestingly,
region 7 (containing part of exon 17 with 125 nt, and
part of the 3" untranslated region with 292 nt) is only
methylated in Demetra, whereas a strong PCR band
indicates that it is unmethylated in Caresse. Region 5
which is predicted to be a CpG island is heavily
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Figure 5 Qualitative RT-PCR expression analysis of HYDME in vegetative and reproductive tissues in the cultivar Carina. 1, roots; 2,
meristems; 3, 7 day-old seedlings; 4, leaves; 5, stamens; 6, immature flowers (before fertilization); 7, seeds 1-3 days after fertilization; 8, seeds 3-5 days
after fertilization. HvActin was used as the positive control.
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Figure 6 Quantitative real time RT-PCR analysis of HYDME during seed development in Caresse and Ippolytos. Expression values were
normalized to those of HvActin. The relative expression ratio of each sample is compared to the control group which was immature flowers.

IF, Immature flowers; 1-3, 3-5, 5-10, 10-15 DAF (seeds at 1-3, 3-5, 5-10, 10-15 days after fertilization). Data represent mean values from two
independent experiments with standard deviations. Values significantly different (P < 0.05) from the control group (IF) are marked with an asterisk.
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Figure 7 Expression analysis of HYDME under drought. Quantitative real time PCR analysis of HYOME at 3 and 10 days after drought
treatment of Caresse(drought-sensitive) and Demetra (drought-tolerant) 7-d-old seedlings. White bars, untreated plants; grey bars and light grey
bars, drought-treated plants. Expression values were normalized to those of HvActin. Relative expression ratio of each sample was compared to
the control group which was untreated plants, 3 days, and was assigned the value of 1. Data represent mean values from two independent
experiments with standard deviations. Values significantly different (P < 0.05) from the untreated plants are marked with an asterisk.

methylated in both Demetra and Caresse. Taken together,
these data demonstrate the presence of cytosine methyla-
tion in both the promoter and gene-body regions of the
HvDME gene in the two cultivars.

Using the McrBc assay no differences in the DNA
methylation status between control and drought-treated
plants were detected in the regions examined in either
cultivar suggesting that there may not be an association
between DNA methylation and increased HvDME ex-
pression under drought conditions.

Two HvDME 3’ downstream regions (at 1696 nt and
5540 nt from the translational stop) found to contain
the 5" and 3" LTR regions of a Copia retrotransposon,
PTAES CS_cons_maximus, were also examined for the
presence of DNA methylation. The 5" and 3" LTRs were
shown to be methylated in control and drought-treated
plants in both cultivars (Figure 8).

Discussion

In the current study we present the sequence analysis,
phylogenetic analysis, expression profiles, genomic organi-
zation, promoter analysis and DNA methylation patterns
of a barley gene encoding a putative HvDME protein.

Sequence analysis

Comparison of amino acid sequences from different DME-
family proteins from the dicot Arabidopsis and different
monocot species revealed that the HYDME protein has
a common modular structure as the other members of
the DNA glycosylase superfamily. Furthermore, it con-
tains the two unknown domains A and B, found only in
DME-family DNA glycosylases. Phylogenetic analysis of
DME-family sequences from different monocots re-
vealed three major cereal clades representing homo-
logues of the AtDME, AtROS1, and AtDML3 proteins.
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HvDME shows highest sequence similarity with the grass
sequences, TaDME1 (AEF38423.1), TaDME2 (AEF38424.1)
TaDME3 (AEF38425.1), BADME (Bradi4g08870.1), and
OsDME (01 g11900.1) which share over 70% identity and
group together in a subcluster that is closer related to the
Arabidopsis DME.

Analysis of the HYDME genomic organization, revealed
a high degree of similarity with its grass homologues,
BdDME (Bradi4g08870.1) and OsDME (01 g11900.1). The
presence of sequences from an LTR Copia Sirevirus retro-
element in the 3" untranslated region of barley DME is
consistent with the recent finding that 86% of the barley
genome is composed of mobile elements or other repeat
sequences the majority of which consists of LTR retro-
transposons [59

In Arabidopsis, the AtDML3 homologue has been sug-
gested to be regulated by the stress-induced miRNA 402
during seed germination under stress conditions [52].
MiRNAs and small RNAs have been widely studied in

—

plants in the past several years and have been shown to play
important roles in various aspects of plant development
[60]. Although initial studies focused on Arabidopsis, in-
tense investigations were soon extended to agronomically
important crops such as cereal monocots [57,58,61-64]. A
search for miRNA targets on the HvDME sequence identi-
fied miRNA HvmiR1126 in intron 15 of the HYDME gene
sequence at near 100% complementarily. Curiously, similar
complementarity was detected between the Brachypodium
miRNA, BdmiR1122, and intron 15 of the BADME gene
and between the rice miRNA, OsmiR1436, and the last in-
tron of the OsDME gene, respectively. The high comple-
mentarity of these miRNAs and their targets might imply
that they are functionally significant. Intronic miRNAs have
been the object of recent studies and demonstrated to play
important roles in the regulation of genes in mammals [65].
In plants, studies on intronic miRNAs have just started to
emerge [66-68]. Certainly further investigations will be
needed to unveil the possible significance of HvmiR1126.
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Expression analysis
Our data on HvDME expression in barley vegetative, re-
productive and seed tissues agrees with data retrieved
from PLEXdb (http://www.plexdb.org/) concerning the
expression of the DME gene from different barley culti-
vars such as Morex and Golden Promise showing DME
mRNA presence throughout plant development. More-
over it concurrent with recent datasets from the large-
scale genome and transcriptome analysis of barley [59]
showing the HYDME transcript (MLOC_17707.1) present
in Morex seedlings, developing tillers, immature flowers
and 4 DAF embryos, and in seeds of 5 and 15 DAF. Ippo-
lytos resembles Morex which is another small-seed culti-
var (31.5 gr per thousand grains) as gene expression in 15
DAF seeds is about 1.5 higher than in 5 DAP seeds (ftp://
ftpmips.helmholtz-muenchen.de/plants/barley/public_data/).
In barley, endosperm cellularization begins at approxi-
mately 4 DAF and ends at 6—8 DAFE, when the seed matur-
ation process begins [69,70]. It might be possible that the
differences in HYDME mRNA accumulation between Car-
esse (large-seed) and Ippolytos (small-seed) during these
critical stages of endosperm development affect gene ex-
pression programmes associated with the processes of cel-
lularization and seed filling and ultimately with the size of
seed. At 10-15 DAF the barley seed has entered the mat-
uration process with high starch synthesis rates and pro-
tein accumulation characterizing this seed storage stage.
The differential expression of HYDME at the 10-15 DAF
seed stage between the two cultivars may reflect varied re-
quirements for metabolic enzyme-encoding genes playing
roles in starch and protein synthesis and storage. Certainly
the exact role of HYDME in the two cultivars will be eluci-
dated by future functional analysis of the HYDME gene.
HvDME expression was examined under conditions of
drought and was found to be substantially induced in
drought-treated seedlings especially in the drought-
tolerant cultivar. Interestingly, in the drought-tolerant
cultivar, Demetra, there is a marked increase of HvDME
expression of ~ 10 fold, after 10 days of drought, whereas
only ~2 fold increase was observed for the drought-
sensitive cultivar Caresse. This suggests a possible role for
the HYDME gene in the drought response in a cultivar-
dependent manner. Although studies on DME glycosy-
lases under stress are currently scarce, a recent study of
response to metal stress in rice revealed induction of the
rice DME gene in soils with elevated mercury, cadmium
and copper [71]. Perhaps induction of the DME gene is re-
quired in cereals in order to cope with the stress imposed
on the plant by unfavourable soil composition and low
water content.

DNA methylation
Three regions of the HYDME promoter (region 1, region
4, and region 5) were found to be methylated in both
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cultivars under control and drought conditions. On the
other hand, two regions that are part of the CpG island
(region 2 and region 3) of the HYDME promoter were
unmethylated in all instances. It seems that the CpG is-
land is in an unmethylated state while the neighbouring
regions to the CpG island are methylated, which is in ac-
cordance with previous reports demonstrating that CpG
islands are typically in a nonmethylated state in an
otherwise heavily methylated genome [72]. The finding
that an active gene is promoter-DNA methylated seems
inconsistent with studies in Arabidopsis and rice that
have associated promoter DNA methylation with gene
repression [5,73]. On the other hand, genome-wide map-
ping of DNA cytosine methylation in rice revealed that
8.1% of active genes were methylated within their pro-
moter [74]. Similarly, the cold-induced gene ZmDREBI
in maize retains some cytosine methylation marks within
the promoter region after cold induction [75]. In soy-
bean, a region of the promoter of a salinity induced gene
was demethylated upon salinity stress, whereas a neigh-
bouring region remained hypermethylated supporting
the suggestion that cytosine methylation is region spe-
cific [76]. In addition, it was reported that while cytosine
methylation is a repressive mark, H3K4me2 alters the
chromatin structure to a form permissive for initiation
of transcription even in the presence of cytosine methyla-
tion [73]. In barley too, other factors such as histone mod-
ifications in interplay with promoter cytosine methylation
may be critical in governing HvDME expression.

Gene-body (transcribed region) DNA methylation was
also investigated for a fragment covering part of exon 1
and a fragment including exon 17 and a part of the 3’
UTR. Exon 1 was shown to be methylated in both Deme-
tra and Caresse, whereas exon 17 was methylated only
in Demetra. DNA methylation in HvDME gene-body is
consistent with a number of reports demonstrating the
presence of gene-body methylation in plants. DNA
methylation within transcribed regions has been de-
tected in about a third of Arabidopsis [77,78] and rice
[73,79] genes. Substantial expression of HvDME in vari-
ous tissues and its enrichment for gene-body DNA
methylation is in accordance to previous studies in Ara-
bidopsis showing that highly and moderately expressed
genes are more likely to be DNA methylated within the
gene-body region [77,80]. Additionally, it is in agreement
with a recent study where the single-base methylome of
wild- and cultivated- rice revealed that promoter DNA
methylation is associated with gene repression whereas
gene-body DNA methylation is associated with gene ex-
pression [79].

Apart from its importance in seed development and
stress copying mechanisms, understanding the regula-
tion of DME genes could have important implications in
nutrition and health. In a very recent investigation attemp-
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ting to analyze the effects of wheat and barley DME
genes on the levels of immunoactive prolamins associ-
ated with gluten-intolerance and celiac disease, wheat
DME was RNAi-downregulated resulting in decreased
expression of endosperm prolamins [39]. These efforts
could lead to improved cereal cultivars producing safe
cereal products for gluten-sensitive individuals [34-39].

During the past several years our group has studied
different epigenetic chromatin regulators implicated in
gene activation or gene repression in barley [40-48]. On-
going efforts to further our knowledge on epigenetic
regulatory mechanisms impacting seed development, nu-
tritional seed content, and the plants’ resistance to abi-
otic stresses such as drought, could lead to breeding for
improved Triticeae varieties.

Conclusions

A DME homologue was characterized in barley and the
encoded protein was found to group together with other
cereal DME-family proteins more closely related to
AtDME and more distantly related to AtROS1, AtDML2
and AtDML3. HvDME contains remnants of a Copia re-
troelement in its 3’downstream region which maybe
important for its regulation. HvDME displayed differen-
tial expression during seed development in two cultivars
varying in seed size, implying a role in endosperm devel-
opment and seed maturation. Moreover, HVDME expres-
sion is markedly increased in dehydrated seedlings in a
drought-tolerant cultivar pointing to a role in response
to abiotic stress such as drought. Finally, differential
DNA methylation in different regions of the gene-body
in two different cultivars suggests epigenetic regulation
of the HYDME gene. The study of a barley DME gene
will contribute to our understanding of epigenetic regu-
lation during seed development and in response to abi-
otic stresses in cereal crops of high agronomic value.

Additional files

Additional file 1: Table S1. Accession numbers of HhH-GPD DNA
glycosylase superfamily members.

Additional file 2: Table S2. Primers used in expression and DNA
methylation analyses.

Additional file 3: Amino acid sequence alignment of DME protein
sequences from Hordeum vulgare, HyDME (FM164415.1); Triticum
aestivum, Ta DME2 (AEF38424.1); Brachypodium distachyon, BADME
(Bradi4g08870.1); Oryza sativa, OsDME (01 g11900.1); Zea Mays,
ZmDME (GRMZM2G123587); Sorghum bicolor, SbDME

(08 g008620.1); Arabidopsis thaliana, AtDME, AtROS1, AtDML2,
AtDML3. Identical amino acids are shown with asterisks and similar
amino acids with dots. The DNA glycosylase domain is indicated in grey
highlights, the helix-hairpin-helix region is overlined and marked in pur-
ple, the GPD region is overlined and the conserved aspartic acid residue
is marked in green. The four cysteine residues forming the 4Fe-4S cluster
are shown in red. The conserved lysine-rich region, and the A and B re-
gions are also overlined.

Additional file 4: Genomic organization of cereal DME genes.
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Additional file 5: The sequence of clone BAC 273i4, containing the
HVDME gene. ATG and TAG translational start and stop codons,
respectively, are shaded in pink. 5" and 3’ LTR regions of the Copia
sirevirus retrotransposon PTAES_CS_cons_maximus are shaded in grey.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AK conceived and designed the experiments, performed RNA isolation,
qualitative and quantitative real time PCR assays, protein sequence analysis,
phylogenetic analysis, genomic organization analysis and wrote the
manuscript. VD performed promoter analysis, designed and performed DNA
methylation experiments and participated in the writing of the manuscript.
AA participitated in the DNA methylation studies. AST revised the
manuscript and directed the whole study. All authors read and approved the
final manuscript.

Acknowledgments

We would like to thank Dr Konstantinos Bladenopoulos (NAGREF) for
providing seed material. This work was supported by a PENED grant
(O3E_402/2003), the EU-COST ACTION 406 and the project AMYLO (SYN-22-
878). Continuous support for the Institute of Applied Biosciences/CERTH from
the General Secretariat of Research and Technology of Greece is also
acknowledged.

Received: 30 April 2013 Accepted: 17 October 2013
Published: 31 October 2013

References

1. Bennetzen JL, Zhu JK: Epigenetics of the epigenome. Curr Opin Plant Biol
2011, 14(2):3-3.

2. De Lucia F, Dean C: Long non-coding RNAs and chromatin regulation.
Curr Opin Plant Biol 2011, 14(2):168-173.

3. Moazed D: Mechanisms for the inheritance of chromatin states. Cell 2011,
146(4):510-518.

4. Feng S, Cokus S, Zhang X, Chen P, Bostick M, Goll M, Hetzel J, Jain J, Strauss
S, Halpern M: Conservation and divergence of methylation patterning in
plants and animals. Proc Natl Acad Sci 2010, 107:8689-8694.

5. Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet 2010,
11(3):204-220.

6. Zhu J-K: Active DNA demethylation mediated by DNA glycosylases.
Annu Rev Genet 2009, 43:66-143.

7. Gehring M, Reik W, Henikoff S: DNA demethylation by DNA repair.

Trends Genet 2009, 25:82-90.

8. Wu SC, Zhang Y: Active DNA demethylation: many roads lead to Rome.
Nat Rev Mol Cell Biol 2010, 11:607-620.

9. Guo Junjie U, Su Y, Zhong C, Ming G-I, Song H: Hydroxylation of
5-methylcytosine by TET1 promotes active DNA demethylation in the
adult brain. Cell 2011, 145(3):423-434.

10. He Y-F, Li B-Z Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al:
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in
mammalian DNA. Science 2011, 333(6047):1303-1307.

11. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PAC, Rappsilber
J, Helin K: TET1 and hydroxymethylcytosine in transcription and DNA
methylation fidelity. Nature 2011, 473(7347):343-348.

12. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen
SE, Fischer RL: DEMETER, a DNA glycosylase domain protein, is required
for endosperm gene imprinting and seed viability in Arabidopsis.

Cell 2002, 110(1):33-42.

13. Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, Harada JJ, Goldberg RB,
Fischer RL: DEMETER DNA glycosylase establishes MEDEA polycomb gene
self-imprinting by allele-specific demethylation. Cell 2006, 124(3):495-506.

14.  Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marn MI, Martlnez-MacTas
MI, Ariza RR, Roldn-Arjona T: DEMETER and REPRESSOR OF SILENCING 1
encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 2006,
103(18):6853-6858.


http://www.biomedcentral.com/content/supplementary/1471-2229-13-172-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-13-172-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-13-172-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-13-172-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2229-13-172-S5.doc

Kapazoglou et al. BMC Plant Biology 2013, 13:172
http://www.biomedcentral.com/1471-2229/13/172

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

34.

35.

36.

Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR: ROS1 5-methylcytosine
DNAglycosylase is a slow-turnover catalyst that initiates DNA demethylation
in a distributive fashion. Nucleic Acids Res 2009, 37:4264-4274.

Bruner SD, Norman DPG, Verdine GL: Structural basis for recognition and
repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000,
403:859-866.

Guan Y, et al: MutY catalytic core, mutant and bound adenine structures
define specificity for DNA repair enzyme superfamily. Nat Struct Biol 1998,
5:1058-1064.

Mok YG, Uzawa R, Lee J, Weiner GM, Eichman BF, Fischer RL, Huh JH:
Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.
Proc Natl Acad Sci 2010, 107(45):19225-19230.

Agius F, Kapoor A, Zhu J-K: Role of the Arabidopsis DNA glycosylase/lyase
ROS1 in active DNA demethylation. Proc Natl Acad Sci 2006, 103
(31):11796-11801.

Penterman J, Uzawa R, Fischer RL: Genetic interactions between DNA
demethylation and methylation in Arabidopsis. Proc Natl Acad Sci USA
2007, 145(4):1549-1557.

Penterman J, Zilberman D, Huh J, Ballinger T, Henikoff S, Fischer R: DNA
demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 2007,
104:6752-6757.

Jiang H, Kohler C: Evolution, function, and regulation of genomic
imprinting in plant seed development. J Exp Bot 2012,
63(13):4713-4722.

Kohler C, Wolff P, Spillane C: Epigenetic mechanisms underlying genomic
imprinting in plants. Annu Rev Plant Biol 2012, 63(1):331-352.

Bauer MJ, Fischer RL: Genome demethylation and imprinting in the
endosperm. Curr Opin Plant Biol 2011, 14(2):162-167.

Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U: The
Polycomb-group protein MEDEA regulates seed development by
controlling expression of the MADS-box gene PHERES1. Genes Dev 2003,
17:1540-1553.

Makarevich G, Villar CBR, Erilova A, Kohler C: Mechanism of PHERES1
imprinting in Arabidopsis. J Cell Sci 2008, 121:906-912.

Gehring M, Bubb K, Henikoff S: Extensive demethylation of repetitive
elements during seed development underlies gene imprinting. Science
2009, 324:1447-1451.

Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D:
Genome-wide demethylation of Arabidopsis endosperm. Science 2009,
324(5933):1451-1454.

Ibarra CA, Feng X, Schoft VK, Hsieh T-F, Uzawa R, Rodrigues JA, Zemach A,
Chumak N, Machlicova A, Nishimura T, et al: Active DNA demethylation in
plant companion cells reinforces transposon methylation in gametes.
Science 2012, 337(6100):1360-1364.

Calarco Joseph P, Borges F, Donoghue Mark TA, Van Ex F, Jullien Pauline E,
Lopes T, Gardner R, Berger F, Feijo Jose A, Becker Jorg D, et al:
Reprogramming of DNA methylation in pollen guides epigenetic
inheritance via small RNA. Cell 2012, 151(1):194-205.

Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A,
Slusarz L, Mosiolek M, Park J-S, Park GT, et al: Function of the DEMETER
DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Nat/
Acad Sci 2011, 108(19):8042-8047.

La H, Ding B, Mishra GP, Zhou B, Yang H, Bellizzi MR, Chen S, Meyers BC,
Peng Z, Zhu J-K, et al: A 5-methylcytosine DNA glycosylase/lyase
demethylates the retrotransposon Tos17 and promotes its transposition
in rice. Proc Natl Acad Sci 2011, 108(37):15498-15503.

Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, lida S: A null
mutation of ROS1a for DNA demethylation in rice is not transmittable to
progeny. Plant J 2012, 4:564-574.

Von Wettstein D: Mutants pave the way to wheat and barley for celiac
patients and dietary health. Induced plant mutations in the genomics era.
Food and Agriculture organization of the United Nations, Rome: Edited by
Shu QY; 2009:187-190 [ISBN: 978-92-5-106324-8].

von Wettstein D, Rustgi S, Kannangara C, Ankrah N, Wen S, Brew-Appiah R,
Wen N, Gemini R, Brueggeman R, Reisenauer P, et al: A multipronged
approach to develop nutritionally improved, celiac safe, wheat cultivars.
Annu Wheat Newslet 2010, 56:261-264.

Langen G, Kogel K, Von Wettstein D: Gluten Free Wheat - New Hope Forceliac
Patients, Mirror of Research University of Giessen, No 1, May 2011; 2011.
[http://geb.uni-giessen.de/geb/volltexte/2011/8116/pdf/
SdF_2011_01_12_19.pdf]

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

Page 15 of 16

Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S:
Targeted modification of wheat grain protein to reduce the
content of celiac causing epitopes. Funct Integr Genomics 2012,
12:417-438. PMID: 22732824.

Rustgi S, von Wettstein D, Ankrah N, Brew-Appiah R, Wen S, Wen N, Osorio C,
Gemini R, Reisenauer P, Lu X, et al- Engineering wheat for celiac patients.
Ann Wheat Newslet 2012, 58:248-253.

Wen S, Wen N, Pang J, Langen G, Brew-Appiah RAT, Mejias JH, Osorio C,
Yang M, Gemini R, Moehs CP, et al: Structural genes of wheat and barley
5-methylcytosine DNA glycosylases and their potential applications for
human health. Proc Natl Acad Sci 2012, 109(50):20543-20548.

Demetriou K, Kapazoglou A, Bladenopoulos K, Tsaftaris A: Epigenetic
chromatin modifiers in barley: Il. Characterization and expression
analysis of the HDA1 family of barley histone deacetylases during
development and in response to jasmonic acid. Plant Mol Biol Report
2010, 28(1):9-21.

Demetriou K, Kapazolgou A, Tondelli A, Francia E, Stanca MS, Bladenopoulos K,
Tsaftaris AS: Epigenetic chromatin modifiers in barley: I. Cloning, mapping
and expression analysis of the plant specific HD2 family of histone
deacetylases from barley, during seed development and after hormonal
treatment. Physiol Plant 2009, 136:358-368.

Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri E,
Ganopoulos |, Flemetakis E, Tsaftaris A: The study of two barley type I-like
MADS-box genes as potential targets of epigenetic regulation during
seed development. BMC Plant Biol 2012, 12(1):166.

Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca M,
Bladenopoulos K, Tsaftaris A: Epigenetic chromatin modifiers in barley:
IV. The study of barley polycomb group (PcG) genes during seed
development and in response to external ABA. BMC Plant Biol 2010,
10(1):73.

Papaefthimiou D, Tsaftaris AS: Characterization of a drought inducible
trithorax-like H3K4 methyltransferase from barley. Biol Plant 2012,
56(4).683-692.

Papaefthimiou D, Kapazoglou A, Tsaftaris A: Cloning and characterization
of SOC1 homologues in barley (hordeum vulgare) and their expression
during seed development and in response to vernalization. Physiol Plant
2012. doi:10.1111/j.1399-3054.2012.01610x.

Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A:
Epigenetic chromatin modifiers in barley: Ill, isolation and characterization
of the barley GNAT-MYST family of histone acetyltransferases and
responses to exogenous ABA. Plant Physiol Biochem 2010,
48(2-3):98-107.

Papaefthimiou D, Tsaftaris A: Significant induction by drought of
HVPKDM7-1, a gene encoding a jumonji-like histone demethylase
homologue in barley (H. Vulgare). Acta Physiol Plant 2012,
34:1187-1198.

Tsaftaris AS, Kapazoglou A, Darzentas N: Epigenetics, epigenomics, and
implications in plant breeding. In “Plant Biotechnology and Agriculture:
Prospects for the 21st Century”. Edited by Altman A, Haegawa PM. Elsevier
Press: Altman A, Haegawa PM; 2012:207-226.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGAS5:
molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol
2011, 28(10):2731-2739.

Saitou N, Nei M: The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406.

Darzentas N, Bousios A, Apostolidou V, Tsaftaris AS: MASIVE: mapping and
analysis of SireVirus elements in plant genome sequences. Bioinformatics
2010, 26(19):2452-2454.

Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H: MicroRNA402 Affects seed
germination of Arabidopsis thaliana under stress conditions via targeting
DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 2010, 51(6):1079-1083.
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK
Graner A, Valkoun J: Differentially expressed genes between drought-
tolerant and drought-sensitive barley genotypes in response to drought
stress during the reproductive stage. J £xp Bot 2009, 60(12):3531-3544.
Hirayama T, Shinozaki K: Research on plant abiotic stress responses in
the post-genome era: past, present and future. Plant J 2010,
61(6):1041-1052.

Ding Y, Tao Y, Zhu C: Emerging roles of microRNAs in the mediation of
drought stress response in plants. J Exp Bot 2013, 64(11):3077-3086.


http://geb.uni-giessen.de/geb/volltexte/2011/8116/pdf/SdF_2011_01_12_19.pdf
http://geb.uni-giessen.de/geb/volltexte/2011/8116/pdf/SdF_2011_01_12_19.pdf

Kapazoglou et al. BMC Plant Biology 2013, 13:172
http://www.biomedcentral.com/1471-2229/13/172

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Hu'Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou D-X: Rice histone deacetylase
genes display specific expression patterns and developmental functions.
Biochem Biophys Res Commun 2009, 388(2):266-271.

Kantar M, Lucas S, Budak H: miRNA expression patterns of Triticum
dicoccoides in response to shock drought stress. Planta 2011,
233(3):471-484.

Kantar M, Unver T, Budak H: Regulation of barley miRNAs upon
dehydration stress correlated with target gene expression. Funct Integr
Genomics 2010, 10(4):493-507.

The International Barley Genome Sequencing Consortium: A physical,
genetic and functional sequence assembly of the barley genome.
Nature 2012, 491(7426):711-716.

Voinnet O: Origin, biogenesis, and activity of plant MicroRNAs. Cell 2009,
136(4):669-687.

Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C: miRNA regulation in the
early development of barley seed. BMC Plant Biol 2012, 12(1):120.
Schreiber A, Shi B-J, Huang C-Y, Langridge P, Baumann U: Discovery of
barley miRNAs through deep sequencing of short reads. BMC Genomics
2011, 12(1):129.

Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K,
McMullen MD, Ware D: A genome-wide characterization of MicroRNA genes
in maize. PLoS Genet 2009, 5(11):21000716.

Li D, Wang L, Liu X, Cui D, Chen T, Zhang H, Jiang C, Xu C, Li P, Li S, et al:

Deep sequencing of maize small RNAs reveals a diverse Set of MicroRNA

in Dry and imbibed seeds. PLoS ONE 2013, 8(1):e55107.
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar
AM: MicroRNA-33 and the SREBP host genes cooperate to control
cholesterol homeostasis. Science 2010, 328(5985):1566—1569.

Yan K, Liu P, Wu C-A, Yang G-D, Xu R, Guo Q-H, Huang J-G, Zheng C-C:

Stress-induced alternative splicing provides a mechanism for the regulation

of MicroRNA processing in Arabidopsis thaliana. Mol Cell 2012,
48(4):521-531.

Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC: Genome wide
analysis of intronic microRNAs in rice and Arabidopsis. J Genet 2012,
91(3):313-324.

Meng Y, Shao C: Large-scale identification of mirtrons in Arabidopsis and
rice. PLoS ONE 2012, 7(2):€31163.

Agarwal P, Kapoor S, Tyagi AK: Transcription factors regulating the
progression of monocot and dicot seed development. Bioessays 2011,
33(3):189-202.

Sabelli PA, Larkins BA: The development of endosperm in grasses.

Plant Physiol 2009, 149(1):14-26.

Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, Von Wettstein D, Liu B:
Transgenerational inheritance of modified DNA methylation patterns and
enhanced tolerance induced by heavy metal stress in rice (oryza sativa L.).
PLoS ONE 2012, 7(9):e41143.

Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes
Dev 2011, 25(10):1010-1022.

Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J:

High-resolution mapping of epigenetic modifications of the rice genome

uncovers interplay between DNA methylation, histone methylation, and
gene expression. Plant Cell 2008, 20:259-276.

Yan H, Kikuchi S, Neumann P, Zhang W, Wu Y, Chen F, Jiang J: Genome-wide
mapping of cytosine methylation revealed dynamic DNA methylation
patterns associated with genes and centromeres in rice. Plant J 2010,
63(3):353-365.

Hu Y, Zhang LU, He S, Huang MIN, Tan J, Zhao LIN, Yan S, Li HUI, Zhou
KUN, Liang Y, et al: Cold stress selectively unsilences tandem repeats in
heterochromatin associated with accumulation of H3K9ac. Plant Cell
Environ 2012, 35(12):2130-2142.

Song Y, Ji D, Li S, Wang P, Li Q, Xiang F: The dynamic changes of DNA
methylation and histone modifications of salt responsive transcription
factor genes in soybean. PLoS ONE 2012, 7(7):e41274.

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR,

Shinn P, Pellegrini M, Jacobsen SE, et al: Genome-wide high-resolution
mapping and functional analysis of DNA methylation in Arabidopsis.
Cell 2006, 126(6):1189-1201.

Cokus S, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C, Pradhan S,
Nelson S, Pellegrini M, Jacobsen S: Shotgun bisulphite sequencing of the
Arabidopsis genome reveals DNA methylation patterning. Nature 2008,
452:215-219.

Page 16 of 16

79. Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H,
Zhang S, et al: Single-base resolution maps of cultivated and wild rice
methylomes and regulatory roles of DNA methylation in plant gene
expression. BMC Genomics 2012, 13(1):300.

80. Zilberman D, Gehring M, Tran R, Ballinger T, Henikoff S: Genome-wide
analysis of Arabidopsis thaliana DNA methylation uncovers an
interdependence between methylation and transcription. Nat Genet
2007, 39:61-69.

doi:10.1186/1471-2229-13-172

Cite this article as: Kapazoglou et al: The study of a barley epigenetic
regulator, HYDME, in seed development and under drought. BMC Plant
Biology 2013 13:172.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Plant material
	Drought experiment
	RNA isolation and first strand cDNA synthesis
	Protein sequence analysis
	Genomic organization
	Expression analysis of HvDME in tissues and under drought
	DNA methylation assays

	Results
	HvDME protein sequence analysis
	Comparative genomic analysis of cereal DME genes
	miRNA target analysis for DME from barley and other cereals
	Expression analysis of HvDME in different tissues and seed developmental stages
	Expression analysis of HvDME in response to drought stress
	DNA methylation analysis of the HvDME gene

	Discussion
	Sequence analysis
	Expression analysis
	DNA methylation

	Conclusions
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

