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Abstract

Background: Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for
thousands of years. The genome has been recently sequenced and transcriptomics are providing information on
candidate genes potentially related to agronomically-important traits. In order to accelerate functional
characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLING
(Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics.

Results: A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations
(0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839
viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental
phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more
than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at
UTILLdb (http://urgv.evry.inra.fr/UTILLdD). Preliminary screens were also performed for atypical fiber and seed
phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant
detection by ENDOT nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA
pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase
(C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes,
respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per
genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed
the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species.
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for crop improvement in flax.

Conclusions: We have developed a flax mutant population that can be used as an efficient forward and reverse
genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of
independant mutant families by screening a comparatively low number of M2 families. The population will prove
to be a valuable resource for both fundamental research and the identification of agronomically-important genes

Keywords: Flax, TILLInG, Mutants, Fiber, Lignin, Lignan, Oil, Fatty acids

Background

Flax (Linum usitatissimum L.) is an economically important
oil and fiber crop that has been domesticated and grown
by mankind for thousands of years. Oil extracted from flax
seeds (linseed) is a considerable source of the omega-3
fatty acid, a-linolenic acid (ALA) and seeds also contain
biologically active lignans with beneficial effects on human
health [1]. Flax phloem fibers have cell walls rich in
cellulose and are used for textiles (linen) and for reinfor-
cing composite polymers as an environmentally-friendly
substitute for glass fibers [2]. Flax is also used as a
biological model to study the molecular mechanisms
involved in the formation of hypolignified secondary
cell walls characteristic of different fiber species (e.g. flax,
hemp, jute, kenaf etc.) [3-6].

Recently a number of different flax resources and
approaches including high-density microarray platforms,
physical and genetic maps, molecular markers, meta-
bolomics and proteomics [6-12] have been developed. The
recent sequencing of the genome [13] has also opened the
way for flax genomics leading to rapid advances in
the structural identification of genes and gene families
[14,15]. However, while all of these approaches allow
the identification of large numbers of genes potentially
involved in a wide variety of different biological processes,
the confirmation of their biological role(s) requires func-
tional characterization. Flax can be genetically engineered
and a limited number of genes have been up-/down-regu-
lated in this species thereby providing important functional
information on the role of these genes [5,16,17]. In order
to accelerate functional characterization of genes poten-
tially associated with different agronomical traits for crop
improvement we have developed a chemically mutagenized
(EMS) flax population and TILLinG (Targeting Induced
Local Lesions IN Genomes) platform.

TILLinG (Targeting Induced Local Lesions IN Genomes)
is a high-throughput reverse genetic method used to
obtain an allelic series of a targeted mutated gene in a
mutagenized population [18,19]. Chemical mutagenesis
is complementary to other approaches such as T-DNA
insertion or radiation and has been applied to a wide
range of different plant species [20-24]. Currently, the
most usual detection method depends on the use of the spe-
cific mis-match endonuclease ENDO1 to detect chemically

induced SNPs. Nevertheless, high throughput sequencing
by NGS technologies coupled with variant detection algo-
rithms is also starting to be used to detect such mutations
[25,26]. The development of such an approach in flax
is timely since although this species can be transformed
by Agrobacterium, the process is time consuming and
relatively inefficient [27]. Ethane Methyl-Sulphonate (EMS)
has been previously used as a chemical mutagen to intro-
duce genetic variability into flax, but has not yet been used
for reverse genetics [28].

In this paper, we present the development and charac-
terization of a flax EMS mutagenized population. Visual
phenotyping and the successful identification of a large
number of cad and ¢34 lignin gene mutants validated the
use of our population as a valuable forward and reverse
genetics tool. The use of this population in subsequent
studies will greatly facilitate the functional characterization
of different targeted genes in this economically important
species.

Results

Production and phenotyping of the EMS Flax mutant
population

Preliminary tests and kill curve analyses (Additional file 1)
were performed on flax (Linum usitatissimum L. cv Diane)
seeds to determine appropriate EMS concentrations as
previously described [29-32]. Based on these results 3
different EMS percentages (0.3%, 0.6% and 0.75%) were
used to mutagenize 10,000 flax seeds. These mutagenized
seeds were sown and gave rise to 5000 M1 plants. M2
seeds were collected from M1 plants and all the seeds
produced by an individual M1 plant were pooled to con-
stitute the corresponding M2 family. After seed collection
from M1 plants, 4,894 M2 different seed families were
obtained and used as the basis for the flax TILLinG
resource.

Five (0.3, 0.6% EMS) and 3 (0.75% EMYS) seeds from each
M2 family were then sown and grown under greenhouse
conditions to produce M2 plants for phenotyping and DNA
extraction. Altogether, a total of 10,839 M2 plants distrib-
uted in 4,033 families (0.3% - 1,700 families, 0.6% - 1,409
families, 0.75% - 924 families, Table 1, Additional file 2)
was obtained. Seeds from 861 M2 families (17.6%) did not
germinate. All M2 plants were individually phenotyped on
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Table 1 Constitution of the M2 mutant population and
percentage sterility for each EMS concentration

% EMS

Number of M2 families Percentage sterility

0.3 1,700 6.3
0.6 1,409 135
0.75 924 184

the basis of 6 main categories and 13 sub-categories
(Table 2) at 2 months after germination. Mutant families
were compared to WT plants grown under identical con-
ditions in the same greenhouse.

Of the 4,033 M2 families, 1,552 (38.5%) showed a visual
phenotype (Figures 1 and 2). The most represented pheno-
types were observed in stems (size and diameter — 65%),
leaves (shape and colour — 46.1%) and plant architecture
(branching internode size — 26.1%), followed by flower-
related phenotypes (late flowering and/or fruit formation,
colour, morphology — 9%), hypocotyl size (3.5%) and
cotyledons (shape and number — 1.8%). A majority (55.2%)
of the families show multiple phenotype modifications
(Figure 1). Approximately 8.6% (937) M2 plants were ster-
ile and analyses indicated that sterility varied depending
upon EMS concentration ranging from 6.31% (0.3% EMS)
to 18.36% (0,75% EMS) (Table 1).

Data on flax mutant phenotypes were introduced into
the UTILLdb database and can be consulted at http://urgv.
evry.inra.fr/UTILLdb.

Flax lignin gene TILLinG

For reverse genetics, leaves of individual M2 plants were
collected and pooled by families for DNA extraction. M3
seeds were collected for long-term storage and production
of further material. To estimate mutation density and

Table 2 Criteria of Phenotyping categories used to
describe the Flax M2 mutant population

Category Sub-category
Cotyledon: Number
Shape
Hypocotyl: Size
Stem: Size
Diameter
Colour
Leaf: Shape
Colour

Architecture: Branching type
Inter-nodes
Flowering/Fruit: Inflorescence
Petal colour

Reproductive organs
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validate the flax population for future reverse genetics
in this species, two genes were TILLed. Since flax is
cultivated for both its seeds and its bast fibers and cell
wall lignin content is an important factor in bast fiber
quality, we decided to TILL two lignin genes (coumarate-
3-hydroxylase, C3H and cinnamyl alcohol dehydrogenase,
CAD). C3H acts early in the monolignol biosynthetic
pathway and plays a key role in the production of G and S
lignin monomers whereas CAD catalyses the final step in
the production of the lignin monomers (monolignols) [33].

Based on currently available sequence data (http://www.
phytozome.net/) provided by whole genome sequencing,
three C3H and seventeen CAD genes can be identified in
the flax genome. For C3H we decided to screen for muta-
tions in [Phytozome : Lus10033524] the flax ortholog of
the Arabidopsis thaliana CYP98A3 [Tair : At2G40890.1]
involved in lignin and flavonoid biosynthesis [34]. In order
to identify the flax CAD gene most likely involved in lignifi-
cation, we established a phylogenetic tree containing CAD
proteins from Arabidopsis thaliana, Populus trichocarpa
and Linum usitatissimum (Figure 3). CAD proteins can be
divided into 5 classes [35] with functional proof for the
involvement of class 1 proteins in lignification. Four
LuCAD genes were present in this class and we there-
fore decided to screen for mutations in the flax gene
[phytozome : Lus10027864] showing the highest simi-
larity with AtCAD4 [Tair : AT3G19450.1] and AtCAD5
[Tair : AT4G34230.1].

The CODDLE program (Codons Optimized to Discover
Deleterious Lesions) combined with the PRIMER 3 tool
were used to define the region within our two genes,
with the most probability of a deleterious G/C to A/T
transition and to design PCR primers compatible with the
ENDOIL1 approach. A region of 1,077 Nt (1170-2247) was
identified in the C3H [Phytozome : Lus10033524] gene.
For the CAD gene [Phytozome : Lus10027864], CODDLE
targeted a region between position 38 and 1336 in the
genomic sequence, corresponding to the dehydrogenase
alcohol domain. However, given sequence redundancy
between different flax CAD genes in this region we chose
to target the region between positions 828 and 1791. This
region is composed of a nucleotide binding domain involved
in cofactor binding and a catalytic domain involved in
substrate binding [36].

A total of 150 CAD and C3H mutants was obtained by
screening for mutations with the mismatch-specific endo-
nuclease ENDOL1 as previously described [37]. Sixty-three,
49 and 39 mutations were detected in the 0.3%, 0.6% and
0.75% EMS populations, respectively. One cad family
(0,6%) contained 2 mutations. Mutation densities varied
between 1/49 kb and 1/30 kb depending on the EMS dose
giving rise to an average value of 1 mutation per 41 kb.

Almost all mutations were G/C to A/T transitions, as
expected for EMS mutagenesis [38] and only one mutation
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Figure 1 Flax M2 mutant distribution in different visual phenotype categories. Blue column = mutiple phenotype, orange column =single
phenotype, figures refer to number of M2 families showing multiple/single phenotypes for a given category.

involved an A/T to G/C transition most likely due to
low frequency EMS-mediated conversion of adenine to
3-methyladenosine and subsequent paring with cytosine
as already observed in a previous study [39]. For mutations
that occurred in exons, 66.7% were missense, 27.6% silent
and 5.7% truncation mutations (Table 3). The mutation
saturation (at the protein level) was calculated as 22.15%
and 15.35% for the CAD and C3H amplicons, respectively.
Mutations were regularly distributed along both amplicons,
but showed a decrease in introns corresponding to a
decrease in G and C nucleotides in these regions (Figure 4).

EMS action on G/C base pairs is influenced by the

local environment

In order to investigate the influence of local environment
on EMS directed G/C to A/T transition we analyzed nu-
cleotide composition flanking the mutated G bases [40,41]
(Figure 5). In the -1 position, G was more frequent (1.3x)
and T was less frequent (0.8x) and in the +1 position, A
was more frequent (1.2x) and C was less frequent (0.8x)
than expected in agreement with previous results [40,41].
We also observed a bias among the observed and expected

triplets composed of —1; 0 and +1 nucleotides (Table 4).
The four most overrepresented mutated triplets were
GGG, CGT, AGA and GGA, whereas the four most
underrepresented triplets were AGT, CGC, TGT and
CGQG, corresponding to a higher frequency of purine
bases in the overrepresented triplets and an increase in
pyrimidine bases in the underrepresented triplets.

From the genotype to the phenotype

Having identified a large number of flax CAD and C3H
mutants we then wished to know whether the mutations
were associated with phenotypic modifications commonly
observed in down-regulated plants or natural mutants
in other species. Such data would also largely contribute
to validating the interest of our mutant population for
functional genomics in flax. For this we decided to focus
on the CAD mutants since both natural CAD mutants
and down-regulated CAD plants in other species show a
characteristic and easily observable red-brown coloration
of the wood known as the ‘brown midrib’ phenotype. This
coloration is mainly due to the accumulation of higher
amounts of cinnamaldehydes into the lignin polymer rather
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Figure 2 Examples of mutant flax phenotypes. a) Flowering mutant with altered petal colour; b) albino mutant; c) flowering mutant with
additional reproductive and non-reproductive organs; d) mutant with branching and stem size changes; €) mutant with altered leaf morphology
(rolled leaves); f) mutant with reduced internodes; g) mutant with altered leaf morphology (elongated spoonbill shape).

than the more usual cinnamyl alcohols [42-48]. In contrast
C3H down-regulation in other species is associated with
modifications in lignin structure but no visible phenotype
[49]. Observation of stem cross-sections obtained from the
52 M2 mutant CAD families (108 plants) with a missense
or stop codon mutation allowed us to identify 62 plants
(belonging to 35 families) with a brown midrib phenotype
(phenotype frequency = 0.57). A comparable screening
of a randomized subset of 33 non-CAD mutant families
(94 plants) identified 6 plants with a weak brown midrib
phenotype (phenotype frequency =0.06). These data
strongly support the idea that the observed brown midrib
phenotype results from a mutation within the targeted flax
CAD gene.

Individuals were then classed into 3 categories depending
upon the intensity of the orange-brown coloration of
the xylem tissues (Figure 6). The first group, corresponding
to the most marked phenotype contained 11 individuals
belonging to 9 mutant families (8 missense mutations and
one codon stop mutation). Characteristics of these mutants
are detailed in Table 5. The potential effect of the different
missense mutations was then evaluated by using the SIFT
software (Sorting Intolerant From Tolerant; http://sift.jcvi.
org/) that uses PSI-BLAST alignments, and the PARSESNP
software (Project Aligned Related Sequences and Evaluate

SNPs; http://www.proweb.org/parsesnp/) to provide a pos-
ition-specific scoring matrix based on alignment blocks.
PSSM scores were obtained by PARESSNP for 5 of the 8
missense mutations (Table 5). No scores were obtained for
the G176R and P280L mutations, most probably because
of a lack of alignment blocks. In addition to the codon stop
mutation, 4 of the six PSSM scores are sufficiently high as
to suggest that CAD protein activity could be negatively
affected in the corresponding mutants. For the other CAD
mutants (categories 0, 2 and 3), 33% of the predicted score
(PSSM and Sift) were in agreement with the observed
phenotype (Additional file 3).

Discussion

Flax is an ancient crop that has long been cultivated for
its fibers and seeds. Current breeding programs aim at
improving yield and quality in both fibers and seeds, as
well as increasing resistance to different pathogens. The
flax genome has recently been sequenced [13], physical
and genetic maps have been developed and SNP markers
identified [10]. In addition, flax specific microarrays, pro-
teomics and metabolomics [6,7,12,50,51] have also been
used to increase our knowledge of flax biology. In this
paper we report the development of a flax TILLinG plat-
form for forward and reverse genetics in this economically
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Figure 3 Rooted Phylogenetic tree (clustalW program with default parameters) of Arabidopsis thaliana, Poplar and Linum usitatissimum
L. CAD proteins. The flax CAD protein selected for mutation discovery is underlined in red.

Table 3 Characteristics of mutations in CAD and C3H amplicons

Target Amplicon Identified  Mutation Exon % of GC Identified mutations Type of mutation (exon) % Mutation
size mutations frequency size  in exons in exon Silent  Missense  Truncation saturation
CAD 869 76 1/40 Kb 620 500 67 15 51 1 225
(22.4%) (76.1%) (1.5%)
C3H 981 79 1/44 Kb 870 5253 74 24 43 7 15.35
(324%) (58.19%) (9.5%)

Silent mutations do not modify amino acids, missense mutations induce amino-acid modifications, truncation mutations induce a premature STOP codon in the
reading frame. Percentage mutation saturation is calculated at the protein level as the number of amino acids modified compared to the total number of amino
acids that can be potentially modified by EMS action.
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Figure 4 Distribution of mutations within CAD and C3H amplicons. a) Schematic representation of mutation distribution along the
amplicons. Introns and exons are represented by black lines and blue boxes, respectively. Missense, silent and truncation mutation are
represented by black triangles, grey triangles and asterisks, respectively. b) Relationship between number of mutations and G+ C content.
Amplicons were divided into 100 bp fragments and the numbers of [G + C] and mutations determined. Introns are represented by light
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important species. 4,033 independent mutant families were
phenotyped and the results organised in the UTILLdb
database (http://urgv.evry.inra.fr/UTILLdb). UTILLdb
is an open phenotypic and genomic mutant database
containing information on mutant populations of pea
[37], Brachypodium [52], tomato [53] and flax (this paper).
The integration of our data into UTILLdb will enable flax
breeders and scientists working on the flax model to
search the database for particular mutant phenotypes.
For example, detailed characterization of mutants showing
altered stem/fiber morphology (Figures 2 and 7), and/or
flower/seed modifications (Figures 2 and 8) will prove

particularly interesting for scientists and breeders inter-
ested in fiber formation and seed oil/lignan biosynthesis.
The database will be updated with information on muta-
tions in specific genes that scientists will be able to access
by sequence homology and/or keyword queries.

In order to validate the mutant collection as an efficient
reverse genetics tool we extracted DNA from 3,515 lines
and successfully TILLed 2 genes involved in lignin biosyn-
thesis using the ENDO1 enzyme as previously described
[37,54]. Our results indicated that our population had
an average mutation rate of 1/41 Kb. This is a high
value as compared to mutation rates observed in other

100,00
90,00 |-
80,00
70,00 |~
60,00 |~
50,00

40,00 |
30,00 | ;
20,00 |
10,00 |~

0,00

mC

mT
HA

-3 -2 -1 0 1

Figure 5 Expected and observed base frequencies around Gs. Expected (left column) and observed (right column) frequencies of C, G,
T, A bases around all Gs or all mutated Gs. A divergence of 215% between expected and observed frequencies is indicated by an asterisk.
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Table 4 Frequency of triplet motif centred on all Gs and
on mutated Gs. Ratios were obtained by comparing the
frequency of a particular triplet centred on the mutated
G to the frequency of the same triplet centred on any
available G in both amplicons

Triplet  Frequencies of triplet Frequencies of triplet Ratio
centered on all Gs centered on mutated Gs
GGG 7.69 14.29 1.86
CGT 2.83 5.19 1.83
AGA 6.68 10.39 1.56
GGA 1032 14.94 145
TGA 8.50 844 0.99
CGA 526 5.19 0.99
GGT 6.68 649 097
TGC 547 5.19 0.95
GGC 6.07 5.19 0.86
AGC 4.86 3.90 0.80
AGG 8.30 6.49 0.78
TGG 1053 714 0.68
CGG 445 260 058
TGT 587 3.25 0.55
CGC 263 0.65 0.25
AGT 385 065 0.17

EMS-generated mutant populations (Table 6) and is
similar to values observed for Triticum aestivum L.
Brassica napus L.; Avena sativa and Triticum durum L.
However, all these populations are polyploid allowing
them to tolerate loss-of-function mutations [55]. The
highest mutation rates previously obtained in diploid
species are those observed in Triticum monococcum
(1/92Kb) and Arabidopsis thaliana (1/89 Kb), approxi-
mately half that observed in our flax population.

With a genome size of approximately 370 Mb [13] we
can estimate that there will be an average of approximately
9,000 mutations per genome. Despite this high value, the
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majority (81.6 — 93.7%) of the M2 population were viable
and produced seeds suggesting that flax plants can support
a high mutation level [55]. Although the high number of
mutations per genome might be considered as a disadvan-
tage since more back-crosses will be necessary to reduce
total mutation number and identify genes potentially asso-
ciated with a particular phenotype via a positional cloning
approach, it also presents a number of advantages. Firstly,
it considerably reduces the number of families that need to
be screened to identify a mutant. For example, calculations
show that only 56 families have to be screened to identify
a missense mutation in a 1 Kb exon target and only 650
families need to be screened to identify a codon stop
mutation, thereby reducing the overall time and costs spent
on mutant identification. Secondly, the high mutation rate
allows the identification of a large number of independent
mutant families for a given gene in a reverse genetics
strategy. For example, screening of our total population
allowed us to identify 67 cad mutants (exons only) and 74
¢3h mutants (exons only). Subsequent characterization
and identification of similar phenotypic modifications in
the different lines provides strong evidence for a link
between gene mutation and the observed phenotype.
This was clearly demonstrated in the observation of our
cad mutants where 35 (71%) of the 52 families showing a
missense or codon stop mutation in the CAD gene showed
the characteristic orange-brown coloration of xylem tissue
previously observed in other CAD down-regulated or
mutant plants [42-48]. Although a previous report of CAD
down-regulation in flax RNAI plants was associated with
reduced lignin, somewhat surprisingly the authors did not
report the presence/absence of a brown midrib phenotype
[16]. This might be related to the relatively high (60—80%)
residual activity in these plants.

Preliminary analyses of our M3 cad mutants (data
not shown) indicate that the mutation is heritable, segre-
gates and can be correlated with brown/orange coloured
xylem further establishing the link between mutation and
phenotype in the flax population. Wet chemistry and

Wild-type Category 1

0.2cm

———

stem. Bar=2 mm.

Figure 6 Brown-midrib phenotype of flax cad mutants. Examples of brown midrib phenotypes observed in stems of cad mutant lines.
Mutants were grouped into 4 classes according to phenotype intensity (1 = strong, 2 = medium, 3 = weak, 0 = absent). WT = wild-type flax

Category 2 Category 3
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Table 5 PSSM/Sift scores for CAD mutant lines showing category 1 brown midrib phenotype

[EMS] Family No. Indiv 1/total* Mutation (Nt) Mutation (AA) PSSM difference Sift score
03 645 3/3 G1734A E351K 11.0 0.09
759 1/3 G1218A V252I 7.3 0.1
823 1/5 G1026A G188R 30.4 0.00
1021 1/4 G990A G176R _ 0.00
1411 1/3 G936A A158T 11.0 0.09
1564 11 C1303T p280L _ 0.00
0.75 814 11 C999T Q1795top damaging damaging
877 1/3 C1079T H205Q 8.0 0.01
884 1/2 G1137A G225R 12.8 0.09

PSSM scores and Sift scores were obtained with PARSESNP and SIFT programs, respectively. Scores in bold text are predicted to be damaging for protein activity
while scores in normal text are predicted to be without effect. Mutations with no scores result from the lack of alignment block for the given position.
*Number individual plants showing category 1 phenotype/total number plants phenotyped per family.

spectroscopy will allow confirmation of structural modifi-
cations in cell wall lignin in these mutants. Similar tech-
niques will also be used to investigate potential changes to
the lignin polymer in flax ¢3/# mutants. Down-regulation
of this gene in other species is associated with an increase
in lignin condensation and reduction in lignin G and S
units [49,78] and it will be particularly interesting to assess
the effects in flax lignin that is already highly condensed
and contains low amounts of S lignin [3].

Conclusions
In conclusion, the generated flax EMS population repre-
sents an important biological resource for both forward

and reverse genetics in this species. A large number of
mutants showing biologically-interesting phenotypes has
been identified and genes have been successfully TILLed
using ENDOL. Further targets can be identified from the
literature, as well as on the basis of recent transcriptomic
studies in flax that have identified different genes potentially
involved in various biological processes [6,7,9]. The use of
the flax EMS population to identify mutants will greatly
accelerate functional characterization of agronomically-
interesting genes in this crop species. In order to accelerate
mutant identification in our flax EMS population, we are
currently developing an approach based on high through-
put sequencing using NGS.

red. Bar=0,1 mm.

Figure 7 Examples of flax mutants showing morphological modifications in bast fibers. a) mutant with low fiber number and fibers with
thin secondary cell walls; b) mutant with disorganised fiber bundles containing lacuna and thin-walled fibers with wide lumens; ¢) mutant with
fibers containing wide lumens; d) mutant with flattened bast fibers; @) mutant with disorganised fiber bundles containing wide lumens and thin
secondary cell walls.Freehand cross-sections of mature flax stems were stained with Phloroglucinol-HCl and lignified cell walls appear coloured in
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filled (p, q) (Bar=0.5 cm).

Figure 8 Examples of seed and flower phenotypes observed in the mutant population. 1-Seeds of mutants showing different colours from
deep yellow (a) to deep black (e) and in between colour variation (b, ¢) including wild type (d) (Bar=0.5 cm). 2-Flowers of mutants showing
different colours from white (g) to parme variation (f, h). 3-Flowers of mutants with abnormal shape (i, j, k). 4-Seeds of mutants showing
variation in shape (I, m) (Bar=0.5 cm). 5-Seed size variation between 2 specific mutants (n, o) (Bar=0.5 cm). 6-Seeds of mutants more or less

Methods

Mutagenesis and plant growth conditions

Ten batches of one hundred seeds (Linum usitatissinium L.
cv Diane) were treated with 8 different EMS concentrations
(0.25, 0.3, 0.5, 0.6, 0.75, 0.8, 1.0 and 2.0%). Two exposure
times (5 and 8 h) were tested for two batches of different
EMS concentration (5 h: 0.3, 0.6, 0.8, 1.0, 2.0% EMS; 8 h:
0.25, 0.5, 0.75, 1.0, 2.0% EMS). Untreated seeds were used
as reference. All seeds were washed with tap water (3 x5
mins, 1 x 30 mins) before transfer to wet Whatman paper
in Petri dishes and incubation in a growth chamber at 20°C
and 8 h photoperiod. Based on percentage germination,
three treatments (0.3% EMS/5 h, 0.6% EMS/5 h and 0.75%
EMS/8 h) were selected representing different balances
between germination and mutation rate. Mutagenized
seeds (M1) were sown in the field for M2 seed production.
Collected M2 seeds were sown under greenhouse condi-
tions together with WT seeds for phenotyping and DNA
extraction. M2 and M3 seeds are stored at 4°C under low

humidity conditions and constitute the EMS flax mutant
collection.

Forward genetic screen

Two months after germination, M2 families were scored
for phenotypes distinct from the wild type. For each
family, the most affected individual was phenotyped in
detail and photographed. For identification of the brown
midrib phenotype, freehand sections of individual stems
were made from cad mutant family plants and com-
pared to control sections under a stereo microscope.
The presence of a brown-orange coloration in xylem
tissue was considered indicative of the brown midrib
phenotype and was noted from 1 to 3 depending upon
the intensity of the coloration with 1 being the most
intense. The category indicated for a family is that of the
most intense phenotype observed in any single individual
belonging to that family.
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Table 6 Mutation frequencies and ploidy levels in different published EMS plant populations
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Model Ploidy level EMS concentration (%) Frequency of mutation Source
Linum usitatissimum L. 2X —0.3, 06, 0.75% —1/41 kb
Triticum monococcum 2% —0.24% -1/92 kb [32]
Triticum aestivum L. 6x —-0.8% —1/47 kb (31]
—-0.6, 0.9% N.A [56]
-0.9% —1/38 Kb [57]
-0.5, 06, 0.7% —1/25 Kb (58]
—-0.75, 1% —1/24 Kb [59]
Triticum durum 4x -0.7% -1/51 Kb [57]
—0.75% —1/40 Kb (59]
Brassica napus L. 4x -05,08,1,1.2% -from 1/12 to 1/22 kb [60]
—1% -from 1/27 to 1/60 kb
-0.3% 1/130.8 kb [61]
—0.6% 1/41.5 kb
Brassica rapa 2X —0.3, 04% 1/60 Kb [62]
Brassica oleracea 2X —0.4% —1/447 Kb (63]
Solanum lycopersicum 2X -0.5% —1/1 710 kb [30]
- 1.0% —1/737 kb
—-0.7% —1/574 Kb (53]
- 1% —1/322 Kb
—1% —1/737 Kb [64]
Cucumis melo L. 2X -1% —1/1500 Kb (65]
=15, 2% —-1/573 Kb [66]
Heliantus annus L. 2% -0.7% —1/475 Kb [67]
Arachis hypogaea 4x -04, 1.2% —1/967 Kb (68]
Arabidopsis thaliana 2X -0.2% —1/415 Kb [69]
-Between 0.25 and 0.5% —1/89 Kb [55]
—0.25, 0.5% —1/300 Kb [40]
-Between 0.25 and 0.56 % —1/180 Kb [54]
Avena sativa 6X —-0.9% —1/30 kb [70]
Glycine max L. Merr. 2X —-0.2,0.15% —1/485 Kb [41]
Lotus japonicus 2X N.A —1/502 Kb [71]
Hordeum vulgare L. 2X -Between 0.25 and 0.75 % —1/500 Kb [72]
Medicago trunculata 2X —0.15% —1/400 Kb [73]
Sorghum bicolor 2X -Between 0.1 and 0.3% —1/526 kb [74]
Pisum sativum 2% -0.25% —1/200 kb [37]
—-0.05% —1/669 Kb [25]
Oriza sativa 2X -1.5% —1/294 Kb [75]
-0.8, 1% —1/2 000 Kb [76]
-1.6% —1/1 000 Kb
Hordeum vulgare L. 2X —0.25,04 —1/1 000 Kb [77]

Genomic DNA extraction and pooling

Leaf material was collected from individual M2 plants
and pooled by family before being dried overnight at 65°C
in a ventilated oven. Total DNA was extracted by using

either the Dneasy Plant 96 Qiagen Kit (Qiagen, Hilden,

Germany) or according to the protocol described by Carrier
et al. [79]. DNA quality for each extraction was moni-
tored by electrophoresis on 0.8% agarose gels. The
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Table 7 Primers used in TILLinG experiments
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Primer

5'-3' Primer sequence

CAD external Forward primer

CAD external Reverse primer

C3H external Forward primer

C3H external Reverse primer

CAD internal Forward primer with M13 tail
CAD internal Reverse primer with M13 tail
C3H internal Forward primer with M13 tail
C3H internal Reverse primer with M13 tail
M13 Forward primer

M13 Reverse primer

5-ACAGTTTGACCTGATGGAGCTCGAT-3'
5"-GAAAACAAGTCAAATCGGACATAGG-3'
5-ATATTTACCAACCGGACTAACCTTG-3'
5-AGTACAACACAATTCCAACTCTTCG-3'
5'-CACGACGTTGTAAAACGACTTTCGGTCCATCATCG-3'
5-GATAACAATTTCACACAGGTATGGGTCTTCTCTTC-3"
5-CACGACGTTGTAAAACGACACCACACTGAATTCGG-3'
5-GATAACAATTTCACACAGGCATGTAAGTCACCAGT-3'
5-CACGACGTTGTAAAACGAC-3'
5-GGATAACAATTTCACACAGG-3'

The M13 tail sequence is indicated in bold text.

DNA of 3,515 M2 family was quantified with Picogreen
(InVitrogen) using a M1000 microplate reader (TECAN-
Switzerland), normalized to 1 ng.uL™" and arrayed in a
total of five 96 wells plates by an 8-fold pooling strategy
(Additional file 4) using a GENESYS 150 workstation
(TECAN-Switzerland).

PCR amplification and mutation detection

PCR amplification was based on nested-PCR and universal
primers [80]. The first PCR amplification was performed
with 1 ng of pooled genomic DNA and target-specific
primers (Table 7) in a 25 pl volume. One microliter of
the first PCR reaction was then used as a template for
the second PCR using two set of primers: target-specific
primers carrying universal M13 tail and M13 universal
primers labelled at the 5" end with infra-red dyes IRD700
and IRD800 (LI-COR, Lincoln, NE, USA). This PCR amp-
lification was performed using 0.1 uM of each primer in a
25 pL volume and with the following two step program:
94°C for 3 minutes; 10 cycles at 94°C for 20 s, primer-
specific annealing temperature for 30 s and 72°C for
1 min; and 25 cycles at 94°C for 20 s, 50°C for 30 s and
72°C for 1 min; then a final extension at 72°C for 5 mins.
PCR amplifications were verified on an agarose gel. Muta-
tions were detected using a LI-COR 4300 DNA analyzer
as previously described [66]. Individual mutations were
confirmed and characterized by sequencing of DNA from
individual M2 families.

Bio-informatic sequence analyses

Phylogenetic analyses of CAD proteins was performed using
the clustalW program with default parameters (http://
www.clustal.org/clustal2/). The choice of gene regions to
be TILLed and amplification primers were designed re-
spectively using the CODDLE tool (Codons Optimized
to Discover Deleterious Lesions; http://www.proweb.
org/coddle/), primer 3 and OligoCalc system (http://
www.basic.northwestern.edu/biotools/oligocalc.html).

Potential effects of missense mutations were evaluated
using the SIFT software (Sorting Intolerant From Tolerant;
http://siftjcvi.org/) and the PARSESNP software (Project
Aligned Related Sequences and Evaluate SNPs; http://
www.proweb.org/parsesnp/).

Supporting data
The flax phenotypic data is publically available on the
UTILLdDb (http://urgv.evry.inra.fr/UTILLdb).

Additional files

Additional file 1: EMS kill curve analyses for flax (Linum usitatissimum
L. cv Diane) seeds.

Additional file 2: Number of individual plants phenotyped per M2
family.

Additional file 3: PSSM/Sift scores and phenotypes for CAD
mutant lines. PSSM scores and Sift scores were obtained with
PARSESNP and SIFT programs, respectively. Scores in bold text are
predicted to be damaging for protein activity while scores in normal
text are predicted to be without effect. Mutations with no scores
result from the lack of alignment block for the given position. The
intensity (0, 1, 2, 3) of the brown-midrib phenotype (orange coloured
xylem) in different CAD mutant lines is indicated in the column
‘phenotype class’ and corresponds to Figure 5. Class 0 corresponds
to wt phenotype. ND = not determined. Numbers in brackets after
mutation (first column) indicate the number of families for which a
given mutation was independently found. The absence of a number
in brackets indicates that the mutation was only found in a single
family.

Additional file 4: Eight-fold 1D-pooling scheme.
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