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Abstract

Background: Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and
digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single
polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of
polymorphic molecular markers available for cultivated peanut is still limiting.

Results: Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers,
and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes
(49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as
transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435
BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new
set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a
mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318
loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between
adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus
anchoring 1 RGH-BAC contig and 1 singleton.

Conclusions: The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome,
providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a
linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.

Background
Cultivated peanut (Arachis hypogaea L.) originated in
South America, and is grown in tropical and sub-tropical
regions across 100 countries on six continents between
40°N and 40°S [1]. Seed dry matter is an important source
of digestible protein (25 to 34%), cooking oil (44 to 56%)
and vitamins such as thiamine, riboflavin, and niacin,
which are particularly important for human nutrition in
many developing countries [2]. As a legume, peanuts

improve soil fertility by fixing nitrogen, providing up to 60
kg/ha nitrogen to the soil, thus benefiting crops subse-
quently planted in the same field [3].
Cultivated peanut is a tetraploid (2n = 4 × = 40), self-

pollinating species with a DNA content of about 2813
Mbp/1 C [4]. Very limited genetic variation in peanut has
been detected by using molecular markers such as
restriction fragment length polymorphisms (RFLPs), iso-
zymes, and random amplified polymorphic DNA
(RAPDs) [5-10]. Low genetic diversity among cultivated
accessions likely derives from the origin of tetraploid pea-
nut in a single, relatively recent allopolyploid event that is
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thought to have involved genotypes of the wild diploid
species Arachis duranensis and Arachis ipaensis [11-15].
Due to the lack of polymorphism at the DNA level, the
crop has not been subject to marker-assisted selection or
resistance gene cloning. As a consequence, there is a sig-
nificant need to pursue genomic strategies in cultivated
peanut, with the specific goal of increasing the availability
of useful molecular tools.
Importantly, while genetic diversity is low, polymorph-

isms do exist in numbers that are likely to be sufficient for
molecular breeding strategies. The challenges to identify-
ing such polymorphisms involve both scale and data
mining: How do we survey a sufficient quantity of the pea-
nut genome to identify large numbers of polymorphisms?
One possibility is the use of simple sequence repeat (SSR)
markers, which now exist as a set of more than 5,000
assayable loci, many of which are published and show pro-
mise as tools for peanut research [16-25].
Genetic linkage maps composed of SSR markers have

been constructed for wild diploid genomes (AA [21,24,26]
and BB [27]), as well as for a tetraploid synthetic AABB
genome derived from a cross between cultivated and wild
amphidiploid species [28]. For these genetic maps it was
relatively easy to identify polymorphic markers because
the corresponding populations incorporated high rates of
polymorphism that are typical of wild Arachis species.
More recently, several low resolution linkage maps have
been produced for purely cultivated tetraploid AABB gen-
ome crosses that harbor much lower polymorphism
[29-33]. For these latter linkage maps polymorphic mar-
kers were limiting, containing less than 200 SSR markers.
However the construction of these genetic maps demon-
strates the potential to produce a higher resolution genetic
linkage map for cultivated peanut.
Although individual SSR markers could be highly valu-

able for marker-assisted selection in cases where they are
linked to traits of interest, in general the number of poly-
morphic SSR markers in peanut remains insufficient as a
tool for routine genetic analysis. Ideally, plant geneticists
and breeders should have access to a sufficient number
of polymorphic genetic markers to ensure identification
of high value markers that are tightly linked to traits of
interest, including disease resistance phenotypes. There-
fore, there is a need to expand the density and availability
of genetic polymorphisms in peanut, and to survey the
status of polymorphic alleles across peanut germplasm.
Bacterial artificial chromosome (BAC) libraries have

been constructed for many plant species because they are
useful tools for physical mapping, map based cloning,
gene structure and function analysis. SSR markers mined
from BAC clones (BAC-derived SSR markers) have
advantages over other markers without targeted sequence
[34,35]. BAC-derived SSR markers have been used to
facilitate the merging of the genetic and physical maps

[36,37], and have streamlined high resolution mapping
and map-based cloning of genes and QTLs of interest
[35].
Here we report the identification and characterization

of SSRs derived from peanut BAC end sequences (BES).
The resulting SSR set is likely to be a good representation
of SSRs from the peanut genome as a whole because they
were derived from a set of randomly selected BAC
sequences. These BES-SSR markers were combined with
other publicly available peanut SSR markers to construct
a new and higher density genetic linkage map in culti-
vated peanut, and to initiate the process of integrating
physical and genetic map resources in peanut.

Results
Sequencing and annotation of BAC clone ends
3,784 resistance gene homolog (RGH)-containing BAC
clones of A. hypogaea cv Tifrunner were identified by
means of hybridization with a set of peanut disease resis-
tance gene probes, representing ~580 unique nucleotide
binding (NB) domains (Rosen, He and Cook unpublished
data). These BAC clones were sequenced from their ends
to yield 3,905 BAC end sequences (BES) representing 3.5
Mbp of the cultivated Tifrunner genome sequence.
Sequencing of an additional 25,000 randomly-selected
BAC clones from a library of diploid A. duranensis [38]
yielded 32,530 BAC end sequences representing 29.3 Mbp
of the A. duranensis genome (Table 1). BAC end sequences
were annotated based on a combination of sequence
homology using BLAST and comparison to the InterPRO
database [39]. BES sequences were divided into five pri-
mary categories according to their sequence similarities: (1)
putative gene-containing, (2) putative DNA transposable
element-containing, (3) putative retroelement-containing,
(4) putative organelle- or ribosomal rDNA-containing, and
(5) sequences with no detectable similarities, as shown in
Table 2. The last of these classes was the largest and repre-
sented 48.5% and 58.0% in wild and cultivated BACs,
respectively. Similar results were obtained for pigeonpea
[37], where 53.6% of BES lacked similiarity to known genes
or proteins. BES sequences in the putative gene-containing
category represented 44.9% of total BES in A. duranensis
and 38.7% in A. hypogaea. We stress, however, that many
BES annotated as “gene-containing” may in fact derive
from retroements, due the wide diversity in retroelement
sequenes and frequent overlap in annotation vocabularies.
There were 4-fold more BES sequences explicitly anno-
tated as retroelements than as DNA transposable elements
in both BAC libraries.

Identification and characterization of BES-SSRs
To enlarge the pool of SSRs in peanut, BES sequences
were used for mining SSRs. One hundred twenty eight
and 1,296 SSRs were identified from BES sequences in

Wang et al. BMC Plant Biology 2012, 12:10
http://www.biomedcentral.com/1471-2229/12/10

Page 2 of 11



the cultivated (tetraploid A. hypogaea) and wild (diploid
A. duranensis) BAC clones, respectively (Table 2). For
both wild and cultivated species, SSRs were more fre-
quent in the non-annotated fraction of BES. As
expected, among these SSRs dinucleotide (47.4%) and
trinucleotide (37.1%) SSRs were predominant (Table 3).
Survey of EST-SSRs in peanut [40] revealed a similar
trend, with 59.5% dinucleotide and 33.7% trinucleotide
SSRs. Dinucleotide SSRs composed of AT repeats
accounted for 27.4% of all SSRs, followed by SSRs with
AG repeats (15.0%). For trinucleotide SSRs, the AAG
SSRs occurred at slightly higher frequency (15.2%) than
AAT SSRs (12.0%) (Table 4). Moretzsohn et al. [21] also
reported an abundance of AAT SSRs in EST sequences,
with only AAG SSRs at a higher frequency. Because AT,
AG, AAG, and AAT SSRs represented 67% of all SSRs
in the BES data set, SSRs with these four motifs were
compared for their quantity and frequency of poly-
morphism. For purposes of this analysis, SSRs were
further subdivided into two classes based on length (in
the sense of Temnykh et al. [41]), with Class I SSRs ≥
20 bp and Class II SSRs ≤ 19 bp in length. For dinucleo-
tide SSRs, the number of SSRs with AT motif in Class I
was higher than those in Class II, while SSRs with AG
motif were less frequent in Class I than in Class II
(Figure 1, Table 5). For trinucleotide SSRs, both SSRs
with AAT and AAG motifs in Class II were more fre-
quent than in Class I (Figure 2, Table 6).
A total of 1,152 primer pairs were designed from 128

SSRs related to RGH containing BAC clones of A. hypo-
gaea and 1,296 SSRs mined from the randomly selected
BAC clones of A. duranensis. One hundred forty eight
(12.8%) of these 1152 SSR amplicons were polymorphic
when compared among eight cultivated genotypes

(Additional file 1). In this analysis we observed similar
rates of polymorphism for SSRs identified from A. dura-
nensis and those identified from the A. hypogaea (12.9%
and 12.4%, respectively), suggesting that rates of SSR poly-
morphism do not differ between RGH and non-RGH
regions of the genome. These frequencies of polymorph-
ism were consistent with that of publicly available SSRs
(10-13%) [16,17,19,23,25,29,30]. The BAC-derived poly-
morphic SSR markers detected an average of 3.2 alleles
per locus, with the polymorphism information content
(PIC) values ranging from 0.21 to 0.87 and an average of
0.45 (Additional file 1). The comparison of SSRs in Class I
and Class II showed that the frequency of polymorphism
was significantly higher in Class I than in Class II for both
dinucleotide and trinucleotide SSRs using Fisher’s exact
test at P < 0.0001 (Table 5 and 6), consistent with previous
observations that longer SSRs are more polymorphic [41].
The type of motifs also showed a strong relationship with
the frequency of polymorphism. Together, the SSRs with
AAT motif generated the greatest frequency (17.5%) of
length polymorphism, followed by SSRs with AT motif
(14.5%), AG motif (10.9%), and AAG motif (4.5%). Similar
results were obtained for soybean BES-derived SSRs, with
AT, AG, and AAT motifs yielding higher rates of length
polymorphisms than other motifs [42]. Among this new
set of peanut BES-SSRs, those with the highest rates of
polymorphism were long SSRs (Class I), with rates of
33.3% for AG-SSRs, 32.4% for AAT-SSRs, and 18.2% for
AT-SSRs (Table 5 and 6), making these the most suitable
targets for new SSR marker development in cultivated
accessions.
Comparison of BES-SSRs identified in this study with

publicly available peanut SSRs revealed that 48.7% of
BES-SSRs were identical to SSRs identified previously by

Table 1 SSRs identified from BAC end sequences

BAC library A. hypogaea (clones contain RGH) A. duranensis (random clones)

Clones sequenced 3,784 25,000

End sequences 3,905 32,530

BES-SSRs 128 1,296

Primers designed 105 1,047

Table 2 Annotation of peanut BAC clone end sequences

Genes TEa REb Organelle/rRNA No annotation Total

EST R-gene others

A. duranensis 5,983 92 8,536 426 1,614 96 15,783 32,530

A. hypogaea 621 50 842 16 79 32 2,265 3,905

Total 6,604 142 9,378 442 1,693 128 18,050 36,435

SSRs mined from A. duranensis and A. hypogaea

SSRs in Ad 108 2 302 5 19 3 857 1,296

SSRs in Ah 15 5 26 82 128
aTransposable element; bRetroelement
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other means (see columns I & J in Additional file 1).
Not surprisingly, there was less overlap in the identity of
23% primer sequences for PCR (column K & L in Addi-
tional file 1), and thus the current data set provides
both novel SSRs and novel primer sets for a portion of
previously discovered SSRS.

Mapping of BES-SSRs
The BES-SSRs developed in this study and ~4,000 SSRs
publicly available were evaluated for their genetic poly-
morphism between two parental genotypes Tifrunner and
GT-C20. A total of 347 polymorphic DNA markers,
including 68 BES-SSR markers, 7 target region amplifica-
tion polymorphism (TRAP) markers, and 1 sequence
tagged site (STS) marker, were identified and used to
detect 385 segregating loci. Detailed information on
mapped SSR primer sequences and motifs are given in
Additional file 2. Among 347 polymorphic markers, 35
identified 2 independently segregating loci and 1 generated
3 independently segregating loci. These multi-locus SSRs
are designated using the suffixes “-1” and “-2” after the
locus name, for 2 and 3 independent loci, respectively.

Chi-square (c2) analysis identified 128 (32.3%) loci that
deviated from the expected 1:2:1 or 3:1 segregation ratio at
P > 0.05 level. Using a LOD score of 4 with the JoinMap4
software, 333 loci were mapped. Twenty-one LGs con-
tained 318 loci that encompassed 1,674.4 cM of total map
distance (Figure 3), while an additional 7 linkage groups
contained 3 or fewer loci, for a total of 18 markers. The
size of the 21 largest linkage groups ranged from 40.2 cM
(12 loci) to 124 cM (26 loci), with an average distance of
5.3 cM between adjacent loci. Among the mapped loci, 71
(22.3%) were BAC-derived SSRs distributed among all but
5 of 21 linkage groups, i.e. LG2, LG13, LG14, LG16, and
LG17 (Figure 3). Two markers (GNB1076 and GNB1112)
from BAC-derived SSRs related to RGH were mapped to
two different groups (LG10 and 18), and anchored 1
RGH-BAC contig containing 7 BAC clones and 1 single-
ton to this genetic linkage map.

Discussion
BAC end sequences have been shown to be a powerful
tool for developing molecular markers. BAC-derived
markers can be used to integrate physical maps with
genetic maps [36,43], and also facilitate map-based clon-
ing [44,45]. About 32.8 Mbp of peanut genomic
sequences obtained from BAC end sequences was used
for mining of SSR markers in this study. We also report
a detailed analysis of these BAC derived SSR. Surpris-
ingly, a large proportion of BES possess similarity to
gene sequences (44.9% of the wild A. duranensis BES
and 38.7% of the cultivated A. hypogaea BES), though
we note that a significant fraction of these gene-contain-
ing BES may derive from retroelements. SSR frequency
was 44.2 and 36.6 SSR/Mbp in wild and cultivated BAC
clones, respectively. These differences may reflect differ-
ences between the genomes of the cultivated tetraploid
genome and the wild diploid genome, but perhaps more
likely reflect differences in the nature of the BAC clones
(i.e., enriched for disease resistance genes in the case of
A. hypogaea and randomly selected clones in the case of
A. duranensis) or differences in the construction meth-
ods of the two BAC libraries (random-shear and partial
HindIII cleavage, respectively).
Allelic diversity estimated for 148 BES derived SSR poly-

morphic markers was an average of 3.2 alleles per locus,
and ranged from 2 to 8 alleles at each locus based on eight
genotypes tested. This level of allelic diversity is lower
than that reported in previous studies, including allele of 3
to 19 (mean 6.9) for 48 Valencia genotypes, 2 to 27 (mean
8.4) for 60 Brazilian genotypes [20], and 2 to 20 (mean
10.1) among 141 genotypes from the US mini core collec-
tion and wild species. However, Cuc et al. (2008) reported
allele numbers ranging from 2 to 5 with a mean of 2.44 in
32 genotypes [23]. Although allelic diversity can be used
as an indicator of genetic variation, such values are relative

Table 3 Percentage of each type of motifs in peanut
genome

Repeat motif Genomic SSR (%) EST-SSR* (%)

Dinucleotide 47.4 59.5

Trinucleotide 37.1 33.7

Tetranucleotide 4.3 1.6

Pentanucleotide 1.4 0.2

Hexanucleotide 0.5 0.3

Compound 9.3 4.5

Total SSRs 1,424 593

*cited from Guo et al. 2009

Table 4 Frequency of individual SSR motifs

Repeat motif Number of SSRs Frequency (%)

AT/TA 390 27.4

AG/GA/CT/TC 214 15.0

AC/CA/TG/GT 68 4.8

GC/CG 18 1.3

AAG/AGA/GAA/CTT/TTC/TCT 217 15.2

AAT/ATA/TAA/ATT/TTA/TAT 171 12.0

ATG/TGA/GAT/CAT/ATC/TCA 49 3.4

AAC/ACA/CAA/GTT/TTG/TGT 36 2.5

ACC/CCA/CAC/GGT/GTG/TGG 21 1.5

AGG/GGA/GAG/CCT/CTC/TCC 18 1.3

AGT/GTA/TAG/ACT/CTA/TAC 13 0.9

AGC/GCA/CAG/GCT/CTG/TGC 8 0.6

ACG/CGA/GAC/CGT/GTC/TCG 4 0.3

GGC/GCG/CGG/GCC/CCG/CGC 3 0.2
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and depend on the number of polymorphic loci and the
relatedness of genotypes analyzed. In this study, only 8
genotypes were used, all representing cultivated materials,
both of which set upper ranges on the number of poly-
morphic loci that could be identified.
Much publicly available SSR data has been derived

from AG repeat motif sequences using enrichment meth-
ods involving hybridization to SSR probes [17,19,23]. The
use of AT sequences in such procedures is generally
avoided because of the potential for the probe to form a
hairpin structure, and thus to function inefficiently. Inter-
estingly the current analysis of BES derived SSRs found
that SSRs with AT motifs were the most frequent. The
randomly selected BAC clones used for developing SSR
markers most likely are a good representation of the
diploid peanut genome, and thus the distributions and

frequencies of the SSRs identified in this study are likely
to be a good reflection of their genome-wide frequencies.
Comparison of polymorphism rates among AT SSRs and
AG SSRs shows that the former has a somewhat higher
polymorphism rate than the latter (Table 5). For trinu-
cleotide SSRs, polymorphism of the AAT SSRs is 3.2-fold
higher than the polymorphism rate of AAG SSRs (Table
6). This result suggests that AT-rich SSR loci may have
relatively high variability in peanut. Several studies have
reported that SSRs with larger numbers of repeats have
correspondingly higher rates of polymorphism [21,36,46].
Temnykh et al. [41] have suggested that SSRs could be
divided into two classes: Class I were long and hypervari-
able markers, and Class II were short and typically less
variable markers. The mutation rate of SSRs increases
with repeat number, but long SSRs in eukaryotic gen-
omes have a mutation bias to become shorter SSRs [47].
Our data also showed that both dinucleotide and trinu-
cleotide SSRs in Class I detected more polymorphism
than those in Class II. The finding suggested that it is
worth developing markers based on long AT-rich SSRs
to provide new informative SSR markers in peanut.
In peanut, several efforts have been made to construct

genetic linkage maps and to meet the pre-requisites for
marker-assisted selection in breeding and map-based
cloning of desirable genes. The first genetic linkage map
in peanut was constructed by Halward et al. [48] in an F2
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Figure 1 Distribution of repeat number in dinucleotide AT and GA SSRs.

Table 5 Polymorphism rates of dinucleotide AT and AG
SSRs in two classes

Number of repeat Non-polymorphic polymorphic Total

> 10 (Class I) AT-SSRs 175 (81.8%) 39 (18.2%) 265

AG-SSRs 34 (66.7%) 17 (33.3%)

6-9 (Class II) AT-SSRs 156 (90.2%) 17 (9.8%) 333

AG-SSRs 154 (96.2%) 6 (3.8%)

Total dinucleotide SSRs 519 (86.8%) 79 (13.2%) 598
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population derived from a cross between two diploid wild
species A. stenosperma and A. cardenasii using RFLP
markers. Another RFLP-based map was developed from
a BC1 tetraploid population of a synthetic amphidiploid
A. batizocoi x (A. cardenasii x A. diogoi) crossed with cv.
Florunner [49]. However, insufficient variability detected
by RFLPs or RAPDs within A. hypogaea germplasm has
hindered the construction of a genetic linkage map
directly in cultivated peanut [48]. As more SSRs have
been developed during the past decade, several SSR-
based maps have been constructed, including AA gen-
ome and BB genome maps in wild x wild species popula-
tions [21,24,26,27], and some genetic maps in cultivated
x cultivated populations [29-33]. These cultivated maps
contain only ~200 SSR loci and thus require additional
markers if they are to have utility for peanut breeding.
The genetic map constructed by Hong et al. (2010) con-
sisted of 175 SSR loci with a total coverage of 885.4 cM
[50], this map was a consensus constructed using three
cultivated x cultivated mapping populations. In this
study, a large number of BES-SSRs were incorporated
into a cultivated genetic map, increasing the number of

mapped markers to 318 in a single cultivated mapping
population, enlarging the coverage to 1,674 cM, and
reducing average distance between two adjacent markers
to 5.3 cM. However, there were seven groups containing
only 3 or fewer loci and 49 loci could not be mapped,
indicating that the linkage map remains incomplete.
The use of common markers between the present map

and previous maps allows a comparison of recombination
frequency and marker order among mapping popula-
tions. Five linkage groups in the present map were cho-
sen to compare with the first SSR-based peanut map
[30], because there were several markers incommon
between two maps (Figure 4). Comparison of these two
maps reveals both conservation of marker order and
rearranged order the between two populations. For
instance, LG7 and LG10 in present map had the same
marker order as LG_AhIII and LG_AhVI in previous
map. Three other linkage groups, however, revealed rear-
rangements in marker order between two mapping popu-
lations (Figure 4).
Ten percent of polymorphic SSRs surveyed more than

one genetic locus. This situation, which has been noted pre-
viously by other authors [30,32], is presumed to derive from
the high similarity of the two subgenomes of tetraploid
A. hypogaea. In this study, most (82%) of the SSRs that
amplified more than one locus were long SSRs (> 30 bp) or
compound SSRs. Strachan and Read (1999) reported that
SSRs with high repeat numbers are unstable during mitosis
and meiosis in humans [51], and as a consequence are
highly variable. By analogy, long SSRs are more likely to
reveal distinct polymorphisms in the two subgenomes of
allotetraploid peanut.
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Figure 2 Distribution of repeat number in trinucleotide AAT and AAG SSRs.

Table 6 Polymorphism rates of trinucleotide AAT and
AAG SSRs in two classes

Number of repeat Non-polymorphic polymorphic Total

> 7 (Class I) AAT-SSRs 46 (67.6%) 22 (32.4%) 100

AAG-SSRs 29 (90.6%) 3 (9.4%)

5-6 (Class II) AAT-SSRs 91 (92.9%) 7 (7.1%) 267

AAG-SSRs 163 (96.4%) 6 (3.6%)

Total trinucleotide SSRs 329 (89.6%) 38 (10.4%) 367
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In parallel to the analysis of BAC-derived SSR mar-
kers, we have also used the TRAP marker technique to
determine the potential application in peanut. Only
seven (~2%) out of 400 TRAP primer pairs were poly-
morphic and were placed on the linkage map. This indi-
cates that TRAP markers, the generation of which
involves the use of arbitrary primers, have only a low
chance of detecting polymorphism in the narrow genetic
base in peanut.
One advantage of using BAC-derived markers in genetic

linkage map construction is that physical contigs can be
anchored on genetic map by mapping BAC-derived mar-
kers [37]. The integrated map would be useful in marker-
assisted selection to introgress genes of interest into elite
cultivars when BAC-derived markers reside in these genes,
and would facilitate map-based cloning of genes and
QTLs. In this study, 105 BAC-derived SSRs related to
RGH-based physical contigs and singletons were devel-
oped. Only three of these SSRs were polymorphic between
the two parents; two of these SSRs were mapped, thus

anchoring 1 contig and 1 singleton into the current
genetic map. The other marker, related to one RGH contig
consisting of three clones was unmapped. Genetic linkage
of candidate gene BAC contigs with phenotypes should
enhance the opportunity for targeted marker development.
In particular, the sequences of the BAC clones can provide
the substrate for new marker development. Although we
have mapped only a small number of RGH-containing
BAC clones in this work, we have identified BAC contigs
that contain the vast majority of ~580 peanut NBS-LRR
RGH sequences (Rosen, He and Cook, unpublished data).
Targeted marker development from these BAC clones
holds potential to enhance the current peanut SSR frame-
work with a large number of high value disease resistance
candidate genes, and thus define the landscape of R-genes
in peanut genome.

Conclusion
The SSRs mined from BAC end sequences of randomly
selected clones and RGH containing clones in this study

AR002I14

AR007O19
AR010H20
AR006K24

AR009G22
AR006P21
AR007H06

AR011K10

Figure 3 Genetic linkage map of the F2 population of Tifrunner × GT-C20 was constructed using SSR markers. The loci in bold were
BES-SSRs. Two loci, GNB1076 and GNB1112, anchored one RGH-BAC singleton and one contig containing 7 RGH-BAC clones to linkage group 10
and 18, respectively.
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enlarge the pool of informative SSR markers in peanut.
These new SSR markers provide useful genetic and
genomic tools for molecular analysis of peanut genome,
and facilitate the construction of higher density genetic
linkage maps. In addition, SSR markers related to RGHs
provide a valuable resource for incorporating RGH con-
tigs and singletons into genetic map, which will ulti-
mately increase our understanding of the distribution
and organization of disease resistance genes in the pea-
nut genome. Such information will facilitate marker-
assisted selection for disease resistance breeding and
map-based cloning of resistance genes.

Methods
Sequencing of BAC clone ends
To identify BAC clones which harbored RGHs, we used
a BAC library representing an estimated 6x of the gen-
ome of peanut cv. Tifrunner together with 589 unique
RGH sequences isolated from the genome of Tifrunner
(unpublished results). Based on comparison to the
sequenced genomes of Medicago truncatula and Glycine

max, these 589 RGHs represent the vast majority of
resistance gene homologs in peanut genome. Hybridiza-
tion of the BAC library with a representative set of
RGH sequence probes yielded a set of 3,784 BAC
clones. These RGH containing BAC clones were
assembled using high information content fingerprinting
(HICF) [52], and resulted in 344 contigs and 334 single-
ton loci, for a total of 678 resistance gene regions in the
peanut genome. All these 3,784 RGH containing BAC
clones were used for end sequencing. In addition,
25,000 clones randomly selected from a BAC library
from the wild species A. duranensis [38] were end
sequenced. The BESs were subjected to a homology
search for annotation by BLAST.

Identification of SSRs from BES and primer designing
After removing short or redundant sequences, BES
sequences were used for mining SSRs using the MISA
search module [53,54]. SSRs were identified using cutoff
values of six repeats for dinucleotide, five repeats for tri-
nucleotide, and four repeats for tetranucleotide SSRs.

Figure 4 Comparison of marker colinear in present and previous linkage maps.
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Based on length of SSRs and their potential as informa-
tive DNA markers, the identified SSRs were classified
into two groups: Class I consisted of SSRs ≥ 20 bp, and
Class II consisted of SSRs ≥ 12 bp < 20 bp [37,41]. Pri-
mers were designed to flank the SSR sequence and gen-
erate a PCR fragment between 150 and 300 bp. Primers
were designed using the Primer3 software [55]. The
designed primers were screened for polymorphism
against eight cultivated genotypes, Tifrunner, GT-C20,
SunOlic 97R, NC94022, D99, H22, Yue you 92, and Xin
Hui Xiao Li, the first four of which being US peanut
cultivars and the latter four Chinese cultivars or breed-
ing lines. The informative SSRs were measured by PIC
value [56].

Construction of a mapping population
The F2 mapping population was constructed at USDA-
ARS, Coastal Plain Experimental Station at Tifton,
Georgia using cv. Tifrunner and GT-C20 as parents.
Tifrunner is a runner market-type cultivar with a high
level of resistance to TSWV, and moderate resistance to
early (Cercospora arachidicola) and late leaf spot (Cer-
cosporidium personatum), but it is a late maturity culti-
var [57]. GT-C20 is a Spanish-type breeding line and
highly susceptible to TSWV and leaf spots but resistant
to aflatoxin contamination [58]. Young leaves were
taken from parents and 94 F2 individual plants for DNA
isolation using a modified CTAB method [59].

Mapping of BES-SSRs
The polymorphic SSRs identified from BAC end
sequences were used for construction of genetic linkage
map. PCR was performed in a total volume of 10 μl of a
reaction mixture containing 25 ng genomic DNA, 200
μΜ each dNTP, 0.1 μΜ each of forward primer with
M13-tail and reverse primer, 0.1 μM M13 primer
labelled by 700- or 800-IR dye (LI-COR Biosciences,
NE), 1 × reaction buffer (10 mM KCl,10 mM (NH4)
2SO4, 20 mM Tris-HCl, 2 mM MgSO4, 0.1% Triton X-
100), and 0.25 U Taq DNA polymerase (BioLabs, Bev-
erly, MA). Amplifications were performed using a DNA
Engine Dyad (BioRad, CA) thermal cycler, with the fol-
lowing cycling conditions: an initial 5 min at 95°C; 35
cycles of 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C;
and a final 3 min 72°C. Amplicons were analyzed by LI-
COR DNA analyzer (LI-COR Biosciences, NE). In addi-
tion, we have evaluated the feasibility of TRAP [60]
markers using sequence related amplified polymorphism
(SRAP) [61] primer paired with RGH primer to detect a
polymorphism in peanut. Four hundred such primer
pairs were screened. PCR reaction mixture included 25
ng genomic DNA, 200 μM each dNTP, 0.375 μM each
primer, 1 × reaction buffer, and 0.2 U Taq DNA poly-
merase (BioLabs, Beverly, MA) in 10 μl. PCR condition

was following the protocol of Hu and Vick [60]. The
polymorphic BAC-derived SSR markers and TRAP mar-
kers combined with polymorphic SSRs from other pub-
lic resources were used for mapping. Marker order and
map distances were determined by JoinMap4 software
(Kyazma, Netherlands) with the Kosambi map function
[62].

Additional material

Additional file 1: List of BES-SSRs.

Additional file 2: List of mapped SSRs in the F2 mapping
population of Tifrunner × GT-C20.
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