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A plant natriuretic peptide-like molecule of the
pathogen Xanthomonas axonopodis pv. citri
causes rapid changes in the proteome of its
citrus host
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Abstract

Background: Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share
some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water
and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri
possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression
of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant
were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the
plant pathogen to modify host responses in order to create conditions favorable to its own survival.

Results: Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with
recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the
tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host
proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 a subunit, maturase K, and a- and
b-tubulin.
Conclusions: We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein
expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can
use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that
such modulations weaken host defence.

Background
Plant Natriuretic Peptides (PNPs) belong to a novel class
of peptidic signal molecules that share some structural
similarity with expansins [1]. While expansins are acting
on the cell wall [2,3], there is no evidence that PNPs do
so too. There is however an increasing body of evidence
suggesting that PNPs affect many physiological
responses of cells and tissues [4]. PNPs contain N-term-
inal signal peptides that direct the molecule into the

extracellular space [5] and extracellular localization was
confirmed in situ [6]. Recent proteomics studies have
also identified the Arabidopsis thaliana PNP (AtPNP-A;
At2g18660) in the apoplastic space [7]. AtPNP-A tran-
scripts are detected in all tissues except in the embryo
and the primary root [see Genevestigator [8]]. In addi-
tion, a number of PNP-induced physiological and bio-
chemical responses including protoplast swelling [9] and
the modulation of H+, K+ and Na+ fluxes in A. thaliana
roots [10] have been reported. PNPs are also implicated
in response to abiotic stresses (e.g. phosphate depriva-
tion [11]) as well as in response to plant pathogens [12].
Surprisingly, we found a Xanthomonas axonopodis pv.

citri (Xac) PNP-like protein (XacPNP) that shares sequence
similarity and identical domain organization with PNPs. A
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significant excess of conserved residues between the two
proteins within the domain previously identified as being
sufficient to induce biological activity was also observed
[13]. Since no significant similarity between the X. axono-
podis pv. citri protein and other bacterial proteins from
GenBank was detected, we firstly proposed that the
XacPNP gene may have been acquired by the bacteria in
an ancient lateral gene transfer event and speculated that
this might be a case of molecular mimicry where the
pathogen modulates host homeostasis to its own advan-
tage. In addition, we have recently demonstrated that
recombinant XacPNP and AtPNP-A trigger a number of
similar physiological responses and made a case for mole-
cular mimicry [14,15] where released XacPNP mimics host
PNP and results in improved host tissue health and conse-
quently better pathogen survival in the lesions.
Biotrophic pathogens like Xac rely on living host cells

to be provided with nutrients. In order to fight against
these pathogens, plants induce programmed cell death
that is a defence mechanism aimed to limit pathogen
growth. On the other hand, necrotrophic pathogens
benefit from host cell death since they feed on dead tis-
sue. It is therefore essential that plants activate the
appropriate defence response according to the pathogen
type. Salicylic acid (SA)-mediated resistance is effective
against biotrophs, whereas jasmonic acid (JA)- or ethy-
lene-mediated responses are predominantly against
necrotrophs and herbivorous insects [16]. Several patho-
gens have acquired the ability to modify these plant hor-
mone signaling and commandeer host hormonal
crosstalk mechanisms as a virulence strategy (recently
reviewed by [17]). For example, some Pseudomonas syr-
ingae strains produce a phytotoxin called coronatine
(COR) [18] that structurally resembles JA derivatives
[19]. Several research groups have shown that P. syrin-
gae employs COR to mimic JA signaling and thereby
suppresses SA-mediated defence through antagonistic
crosstalk [20]. Moreover, COR could suppress stomatal
defence, allowing the pathogen to enter host tissue [21].
Pathogen infection has profound effects on hormonal
pathways involved in plant growth and development. In
that context, perturbing auxin homeostasis appears to
be a common virulence mechanism, as many pathogens
can synthesize auxin-like molecules. Loss of the ability
to synthesize auxin-like molecules renders these patho-
gens less virulent [22]. Also, some pathogens deliver
effector proteins that may directly impact on host auxin
biosynthesis [23]. Recent works highlight the role of
abscisic acid (ABA) in either promoting or suppressing
resistance against various pathogens. Particularly, P. syr-
ingae pv. tomato infection dramatically induced the bio-
synthesis of ABA [24]. In addition, the effector protein
HopAM1 aids P. syringae virulence by modulating ABA
responses that suppress defence responses [25].

Here we report that XacPNP affects both photosyn-
thetic parameters and the host proteome after short
term exposure and discuss these findings in the light of
plant-pathogen interactions. We also discuss the possi-
ble cooperation of ABA and PNP in the regulation of
host homeostasis under pathogen attack.

Results and Discussion
Effect of XacPNP in Host Photosynthetic Efficiency and
Tissue Hydration
We have previously shown that XacPNP triggers a num-
ber of physiological responses similar to those caused by
AtPNP-A [14] and that its presence in the citrus bacter-
ial pathogen counteracts the reduction of host photo-
synthetic efficiency [26]. Thus to gain insight into the
effects of XacPNP in the response on host plants, we
analyzed whether this recombinant bacterial protein
could modify photosynthetic performance by examining
chlorophyll fluorescence parameters [27]. To this end,
citrus leaves were infiltrated with 5 μM XacPNP in 50
mM Tris and chlorophyll fluorescence measured after
30 minutes, 2, 4, 6 and 8 hours. XacPNP-treated leaves
showed similar values of maximum quantum efficiency
of photosystem II (PSII) (Fv/Fm) than control leaves
(50 mM Tris), indicating similar maximal intrinsic effi-
ciency of PSII when all the centres are opened
(Figure 1A). On the other hand, at a light intensity of
100 μmol quanta m-2 s-1 XacPNP improves both, the
quantum yield of PSII photochemistry (F’v/F’m)
(Figure 1B) and the PSII operating efficiency (jPSII) and
this improvement is maintained until at least 6 hours
after protein infiltration (Figure 1C). The values
obtained for these parameters in the presence of
XacPNP were statistically different from the control
leaves infiltrated with buffer at p < 0.05 and 0.001,
respectively, and indicated that the efficiency of the
photochemistry and linear electron transport through
PSII are enhanced in response to this peptide. In con-
trast, no differences were observed in the photochemical
quenching (qP) (Figure 1D), whereas non photochemical
quenching (NPQ) showed a significant decrease in
energy loss as heat as a consequence of XacPNP treat-
ment (p < 0.01), and this is indicative of more efficient
use of energy (Figure 1E). In summary, the bacterial
natriuretic peptide-like protein can improve the rate of
linear electron transport. However, we cannot rule out
the possibility that the effect on photosynthetic effi-
ciency could be due to secondary effects given the
improved tissue condition observed in leaves infected
with the wild type pathogen compared to those infected
with bacteria lacking XacPNP [14]. Further analyses will
be needed to elucidate the mechanisms and signalling
pathways that lead to this effect on photosynthesis.
However, we observed that the improvement in
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photosynthetic efficiency was maintained for some
hours, suggestive of a lasting effect of this protein on
the host photosynthetic machinery. Moreover, our pre-
vious results on the XacPNP expression in bacteria
recovered from infected tissue indicates that its expres-
sion begins 24 h after infiltration and increases there-
after [14], suggesting a continuous release of the peptide
to exert its function in the host plant cell. Recently, we
also demonstrated that the expression of XacPNP in X.
axonopodis pv. citri reduces the severity of reduction of
key photosynthetic proteins during pathogenesis and
that this effect is observed until day 6 post infiltration
[26]. Therefore, all results obtained to-date suggest that
this peptide improves and/or protects photosynthetic
activities during pathogen attack.
PNP-dependent protoplast swelling is a well documen-

ted response and is explained by net water uptake
[9,28,29]. Here we investigated the effect of XacPNP on
the water status in the host plant tissue. We measured
water potential in XacPNP-infiltrated leaf tissue and
obtained values of -1.65 ± 0.25 MPa while for control
leaves values were -2.4 ± 0.20 MPa. Since water poten-
tial gives a measure of the relative tendency of water to
move from one area to another, the higher values
observed for XacPNP-treated leaves point to an
increased tendency of water to enter cells in the treated

tissue and thus support the idea that bacterial PNP
induces tissue hydration.
The physiological results presented here reinforce the

idea that XacPNP is involved in host homeostasis modu-
lation since, at a given light intensity, XacPNP-treated
leaves show improved efficiency of PSII photochemistry
and of the linear electron transport through PSII. The
peptide also triggers a more efficient use of the energy
since in treated leaves less energy is lost as heat. It is
well documented that water stress produces an overall
decrease of the rate of electron transport through PSII
and that the photochemical efficiency of PSII decreases
with the leaf water potential [30]. Water stress in agri-
cultural plants is ameliorated by the use of cytokinin-
type phytoregulators that increase the stability of the
photosynthetic apparatus under such unfavourable
environmental conditions [30]. Cytokinins are known to
increase water influx into vacuoles, which raises the tur-
gor pressure, which in turn opens the pores of stomata.
In this way, they ensure an increased supply of carbon
dioxide and increase in photosynthesis. It was recently
reported [31] that over-expression of isopentenyltrans-
ferase, an enzyme that catalyzes the rate-limiting step in
cytokinin biosynthesis, causes an elevation in cytokinin-
dependent photorespiration, which can explain the pro-
tection of photosynthetic processes beneficial during

Figure 1 Chlorophyll fluorescence parameters in citrus leaves treated with XacPNP. (A) Potential quantum efficiency of PSII (Fv/Fm); (B)
effective quantum efficiency of PSII (F’v/F’m); (C) PSII operating efficiency (jPSII); (D) photochemical fluorescence quenching (qP) and (E)
nonphotochemical fluorescence quenching (NPQ) of control and XacPNP-infiltrated citrus leaves at the times stated. The results are the mean of
six replicates and error bars represent the standard deviations.
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water stress [31]. We previously demonstrated that in
guard cells XacPNP causes starch degradation with a
consequent rise in solute content, which in turn induces
stomatal opening, causing increased in net water flux
through the leaf [14]. Here we show that XacPNP can
enhance plant water potential and propose that much
like cytokinins, XacPNP significantly improve the per-
formance of photosystem II through the amelioration of
the leaf water status and by increasing stomata resis-
tance. The results goes some way to establish XacPNP
as a modulator of host responses particularly at the level
of tissue hydration and photosynthetic efficiency, out-
comes that favour biotrophic pathogen survival [14].

Two-Dimensional Gel Electrophoretic Analysis of Protein
Expression and Mass Spectrometric Identification of
Induced Protein Spots
Given that recombinant XacPNP causes rapid and sus-
tained physiological changes in the host, we were inter-
ested in investigating if these changes are also reflected
in alterations in the host proteome. Plants were treated
with XacPNP in 50 mM Tris for 30 min and proteins
were extracted for proteomics analyses. Since the buffer
was required to keep XacPNP in solution, we ascer-
tained that it did not modify photosynthetic efficiency
after 30 min. Ten protein spots that showed the most
reproducible increase in abundance in XacPNP treated
leaves, as shown by the PDQuest analysis (Figure 2),
were identified and analysed by mass spectrometry. The
results are detailed in Table 1. We observed significant
increases in the chloroplast proteins Ribulose-bispho-
sphate carboxylase (Rubisco) activase and the a-subunit
of the chloroplast F1 ATP synthase. In addition, the
chloroplast transcript processing enzyme maturase K
also accumulated in response to XacPNP. We also
noted increases in tubulin a-chain and b-tubulin 1, both
of which are cytosolic.
In the following, we provide a brief characterisation of

the isolated proteins, and where appropriate, a rationale
for the proteomic assignment. Rubisco activase is the
enzyme regulating Rubisco activity by hydrolysing ATP
to promote the dissociation of inhibitory sugar phos-
phates, and this even at limiting CO2 concentration
[32,33]. The increase in Rubisco activase observed would
indicate a promotion of the dissociation of inhibitory
sugar phosphates, and this even at limiting CO2 concen-
trations [32,33]. Such an increase in anabolism will most
likely lead to net solute gain in the affected tissues.
ATP synthases are the enzymes that can synthesize

ATP from ADP and inorganic phosphate. Present both in
plant mitochondria and chloroplasts, ATP synthases are
composed of the F0 and F1 domains [34]. ATP synthesis
occurs at the b-subunit, and the a-subunit has been
demonstrated to be essential for b-subunit activity [35].

Maturases are splicing factors for the plant group II
introns from premature RNAs. While they generally
contain three domains, the matK gene encodes a protein
that contains only fractions of the reverse-transcriptase
(RT) domain, and there is no evidence of the zinc-fin-
ger-like domain [36]. However, MATK displays the
domain X (the proposed maturase functional domain)
and has been assumed to be the only chloroplast gene
to contain it [37]. MATK was proposed to function in
the chloroplast as a post-transcriptional splicing factor
[38-41]. To date, only three studies have presented evi-
dence for the existence of a MATK protein in plants
[potato (Solanum tuberosum, [42]), mustard (Sinapis
alba) [43] and barley (Hordeum vulgare) [39]. While in

Figure 2 2-DE analysis of citrus leaves proteins induced by
XacPNP. Protein profiles in 2-DE SDS-PAGE of urea-buffer extracted
total soluble proteins of citrus leaves stained with Coomassie blue.
Equal amounts of proteins (150 μg) were separated on 7 cm pI 4-7
linear gradient strips in the first dimension and on 12% SDS-PAGE in
the second dimension. (A) citrus leaves infiltrated with Tris 50 mM
solution as control; (B) citrus leaves infiltrated with 5 μM XacPNP.
Proteins with significantly different expression levels between
control and infected plants (p < 0.05) are indicated with white
arrows and numbered. Numbers refer to protein spot numbers on
Table 1. Numbers on the right indicate molecular mass in kilodalton
(kDa).
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barley, the identified protein product was close to the
expected molecular mass for full-length MATK, the pro-
tein appears to be much smaller than expected in potato
and mustard. These results indicated that MATK might
be truncated in some plant species. It is noteworthy that
a chloroplast ATP synthase subunit is up-regulated and
this is consistent with increased metabolic activity while
the MATK is indicative of splicing activities in the
chloroplast. Augmented levels of MATK point to
increased photosynthetic activity that is not an expected
response to pathogen attack but almost certainly one
beneficial to biotrophic pathogens.
Both a-tubulin (TUA) and b-tubulin (TUB), often

regarded as ‘housekeeping’ genes, are homologous but
not identical proteins that heterodimerize in a head to
tail fashion to form microtubules. The latter are highly
dynamic structures involved in numerous cellular pro-
cesses including cell shape specification, cellular trans-
port, cell motility, cell division and expansion [44]. In
Arabidopsis thaliana, the TUA and TUB gene family
consist of six and nine genes, respectively [45-48]. The
isoforms are differentially expressed during plant devel-
opment in a tissue-specific manner [47-52] and/or in
response to environmental conditions [53,54]. During
pathogen infection, microtubules have a role in the
spread of tobacco mosaic virus from cell to cell [55].
Furthermore, it has also been described that fungal
infection can lead to local microtubule depolymerisation
[56]. The increased levels of tubulins may be attributed
to the fact that XacPNP is inducing a hyper-hydration
of the host cell, previously seen in response to Arabi-
dopsis PNP (AtPNP-A) that is able to rapidly increase
plant protoplasts volume [9]. These changes in cell
volume and thus cell architecture are likely to be
accompanied by changes in tubulin content. This 2-DE
comparative analysis between the XacPNP and control
treated leaves offered a way to identify metabolic path-
ways. The variation in protein expression strongly sug-
gested that XacPNP affects metabolic activities and in

particular, that after 30 min several key components of
the photosynthetic apparatus are up-regulated.

Computational systems analyses of XacPNP-responsive
proteins
In order to gain further insight into PNP-dependent
responses, we have identified the A. thaliana homolo-
gues of the proteins identified in the proteomic experi-
ment (Table 2) and used functional annotation
protocols [12,57] to infer the biological role of the
homologues in the model species. A gene ontology ana-
lysis of the 50 most correlated genes, listed in Table 2
[see Additional file 1], firstly revealed that chloroplast
protein encoding genes and their most correlated genes
are enriched in the GO term “photosynthesis” as well as
“abiotic stimuli” at level three. Secondly, the Rubisco
activase gene co-expressed group is significantly
enriched in the term “response to microbial phytotoxin”
at level five and thirdly, the maturase K and co-
expressed genes are enriched at level four for the terms
“generation of precursor metabolites and energy” as well
as “metabolic compound salvage”. The cytosolic tubulin
a-chain encoding gene and group of co-expressed genes
are enriched for the terms “cellular component
organization and biogenesis” at level three, “cytoskeleton
organization and biogenesis” at level 5 and “microtu-
bule-based process” at level 6. The b-tubulin 1 and
co-expressed genes yielded no GO term enrichments.
When the co-expressed genes were analysed for com-
mon plant cis-elements in their promoter regions [see
Additional file 1], we noted the presence of the “ABRE-
like binding site motif” in the chloroplast located
proteins reported here. ABRE (abscisic acid (ABA)-
responsive element binding protein) [58] is a transcrip-
tion factor (TF) with a role in ABA mediated responses
to drought and high salt and hence homeostatic distur-
bances [59]. The second TF binding site in common
with the group of chloroplast co-expressed genes is the
CACGTG motif [60].

Table 1 Identification of XacPNP–induced proteins with MALDI-TOF mass spectrometry

Spot
n°

Protein name Species and accession n° Predicted MW/pI Observed MW/pI MOWSE Score Match/% coverage

1 Rubisco activase Ipomea batata ABX84141 48/8.16 40/5.4 71 9/29

2 Rubisco activase Malus x domestica S39551 48/8.20 48/5.0 75 10/30

3 Rubisco activase, fragment Nicotiana tabacum S25484 26/5.01 30/5.6 70 6/30

4 Rubisco activase alpha 2 Gossypium hirsutum Q308Y6 47/4.84 50/5.1 105 11/36

5 ATP synthase CF1 a subunit Citrus sinensis YP_740460 55/5.09 60/5.3 138 14/33

6 Maturase K Alternanthera pungens AAT28225 60/9.67 <10/4.4 77 12/37

7 Maturase K Capsicum baccatum ABU89355 38/9.65 <10/4.4 80 10/42

8 Tubulin a-chain Prunus dulcis S36232 49/4.92 60/5.2 86 9/30

9 Tubulin a-chain Prunus dulcis S36232 49/4.92 55/5.3 121 11/34

10 b-tubulin 1 Physcomitrella patens Q6TYR7 50/4.82 60/5.25 156 18/44
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The stimulus response analysis in “Genevestigator”
[summarised in Additional file 2A] informs that the
genes encoding proteins with chloroplast function -
Rubisco activase, ATP synthase CF1 a-subunit and
maturase K - are down-regulated by abscisic acid
(ABA). Rubisco activase and maturase K are also down-
regulated by drought, which in turn down regulates
tubulin a-chain and the b-tubulin 1 encoding genes.
The latter two are up-regulated by the cytokinin hor-
mone zeatin and down-regulated by the pathogen P.
syringae.
The stimulation of maturase K and co-expressed genes

is indicative for “generation of precursor metabolites
and energy” as well as “metabolic compound salvage”
and can presumably keep cells alive even under condi-
tions of increased stress, i.e. pathogen attack, and is
therefore advantageous to a biotroph. In addition, the
co-expressed chloroplast genes with “ABRE-like binding
site motifs” suggest that XacPNP participates in the
drought response, presumably affecting water and/or ion
movements in the host. Given that ABA has complex
antagonistic and synergistic roles in plant defence [61]
and down-regulates genes encoding chloroplast proteins,
we propose that XacPNP antagonises ABA effects in
chloroplasts. This is consistent with previous reports
that showed that AtPNP-A can significantly delay ABA-
caused stomatal closure [29].
We also queried “Genevestigator” to identify mutants

in which the Arabidopsis homologues of our group of
citrus genes were transcriptionally up- or down-regu-
lated [summarised in Additional file 2B]. For the Arabi-
dopsis homologues, all genes are up-regulated in the
lec1-1.3 mutant. The lec (leafy cotyledon) mutants are
homeotic mutants that cause defective embryonic
maturation and viviparous embryos that are not insensi-
tive to ABA but have an altered response to desiccation
stress [62]. LEC transcription factors stimulate ABA
levels and activate genes that repress giberellin (GA)
levels, contributing to the high ABA to GA ratio charac-
teristic of the embryonic maturation phase. High ABA
levels in turn stimulate LEC to activate seed protein
genes, and the reduction in GA levels might facilitate
LEC activity [63]. Moreover, the phenotype of the gain-

of-function mutant LEC1, in which activation of
embryonic genes is augmented, is strongly enhanced by
exogenously added auxin and sugars and is antagonized
by cytokinin [64], thus linking auxin and sucrose levels
to cell fate control and promoting cell division and
embryonic differentiation. The fact that XacPNP causes
starch degradation in guard cells [14] may be an indica-
tion that the increase in soluble sugars is a signal to
trigger the whole photosynthetic response. We are cur-
rently in the process of conducting further analyses to
determine the direct effects of XacPNP on plant carbo-
hydrate composition and carbohydrate metabolism in
plants.
It is noteworthy that ATP synthase CF1 a-subunit and

maturase K are markedly down-regulated in the double
loss-of-function mutant (mkk1/2). Given that the Arabi-
dopsis MKK1 and MKK2 mitogen-activated protein
kinases are implicated in biotic and abiotic stress
responses and that the mutant has a marked phenotype
in both development and disease resistance [65], we
postulate that XacPNP signals, at least partly, are
mediated via mitogen-activated protein kinases.
We have previously proposed that AtPNP-A may

function as a component of plant defence responses
given that a co-expression analysis revealed that its 25
most expression correlated genes show a significant over
representation of genes annotated as part of the sys-
temic acquired resistance [12]. It may appear quite
counterintuitive that PNPs (including immunoreactant
PNPs) are up-regulated in the host in response to
pathogen attack [12,66], while at the same time the
pathogen gains an advantage by using this molecule to
its own advantage. However, it does appear that plant
hormone responses are highly complex and triggered
and/or modulated by specific ratios of different hor-
mones and signaling molecules. Unbalancing such ratios
will disturb optimal plant responses and this can be to
the advantage of the pathogen. As an example, patho-
gens have been shown to increase the level of ABA and
sensitivity to ABA in host plants [24], while exogenous
addition of ABA to plants increases host susceptibility
and this finding is consistent with the fact that ABA
deficient mutants are more resistant to infection [24,67].

Table 2 Homologues of the identified proteins in A. thaliana

Citrus protein identified A. thaliana homologa C. sinensis protein or EST % Identity/Similarityb

Rubisco activase AT2G39730/NP_850320.1 EY668872.1 86/91

ATP synthase CF1 a subunit ATCG00120/P56757.1 YP_740460 94/96

Maturase K ATCG00040/NP_051040.2 CX048162.1 67/79

Tubulin a-chain AT4G14960/NP_193232.1 CV887340.1 93/95

b-tubulin 1 AT5G62690/NP_568959.1 CV884976.1 98/100
aAccession numbers for A. thaliana homolog genes and proteins are provided.
bIdentity and similarity between A. thaliana and C. sinensis homolog proteins.
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An explanation that was put forward is that ABA may
be used by pathogens to adjust the apoplastic water sta-
tus, which in turn is a critical determinant of pathogen
growth [24,68]. Given that ABA and PNP cooperate
with each other in a complex and tissue specific man-
ner, it is conceivable that unbalancing the ratio of the
two disturbs host homeostasis to the advantage of the
pathogen. Indications for the nature of the cooperation
between PNPs and ABA come from studies on stomata
where they have antagonistic effects whereas PNP
dependent protoplast swelling is not significantly
affected by ABA [29] and while PNP signaling is criti-
cally dependent on the second messenger guanosine
3’,5’-cyclic monophosphate (cGMP) [4,69], ABA signal-
ing does not appear to be [29]. In addition, evidence for
antagonistic effects of ABA and PNP was revealed by
transcriptomics analyses in Arabidopsis thaliana [8] that
show a >1.5 fold increase in transcript accumulation of
AtPNP-A (AT2G18660) in aba1-1 and aba1-1.1 plants
deficient in ABA synthesis due to a mutation in the
zeaxanthin epoxygenase encoding gene. There is also a
strong indirect link between ABA and PNP; ABA sup-
presses salicylic acid (SA) biosynthesis [67,70] and SA in
turn has a marked effect on AtPNP-A transcript accu-
mulation in Arabidopsis. In mutants with elevated SA
levels (cpr5 and mpk4) AtPNP-A is markedly up-regu-
lated (>2 fold) and conversely, in the SA deficient
mutant nahG AtPNP-A transcript levels are down
(>4 fold) [12]. In summary, our results suggest a role for
XacPNP as an effector protein that disturbs host home-
ostasis to the advantage of the pathogen.

Conclusions
We have provided experimental evidence that XacPNP pre-
sent in the citrus canker pathogen is able to modify the host
proteome and mainly affects proteins essential for photo-
synthesis and in particular photosynthetic efficiency. Gene
ontology analysis as well as stimulus responses and mutant
analysis suggest that these proteins might in some instances
function as antagonists of ABA, while inducing similar
responses to those observed with cytokinin. None of the
XacPNP responsive proteins identified to date is related
directly to defence responses, lending support to the idea
that XacPNP functions as modulator of host homeostasis.
Finally, considering that X. axonopodis pv. citri is a biotroph
and not a free-living pathogen and the only known bacteria
in which PNP is present, we propose that the role of
XacPNP during the infection process is to maintain host
cellular conditions favourable for bacterial survival.

Methods
Synthesis of Recombinant XacPNP
The region coding for the mature XacPNP protein was
inserted into pET28a vector (Novagen, USA) and expressed

in E. coli as an His-tag N-terminal fusion protein. Briefly,
XacPNP was amplified by PCR using this pair of oligonu-
cleotides: NPNPB (5’ ATCAGGATCCGACATCGGTA-
CAATTAGTT 3’) and CPNPH (5’ ATACAAGCTTT
TAAATATTTGCCCAGGGCG 3’), bearing BamHI and
HindIII restriction sites, respectively. After sequencing and
digestion, the PCR product was ligated to the same sites in
pET28a. E. coli BL21(DE3)pLys cells transformed with this
plasmid were grown in LB medium containing antibiotics
at 37°C to an absorbance of 0.8 at 600 nm. Protein expres-
sion was induced by adding 0.1 mM IPTG and incubation
continued for an additional 3 h period at 30°C. Then, cells
were harvested, and resuspended in 50 mM Tris-HCl pH
8.0, 150 mM NaCl, 5 mM MgCl2, 10 mM imidazole and 1
mM phenylmethylsulfonil fluoride. After disruption of the
bacterial cells by sonication, lysates were clarified by centri-
fugation and proteins purified using Ni-NTA agarose resin
(QIAGEN) as recommended by the manufacturer. Firstly, 1
mL of 50% Ni-NTA slurry was loaded onto a column and
equilibrated with 4 mL of equilibration buffer (50 mM
Tris-HCl pH 8.0, 150 mM NaCl and 10 mM imidazole).
Subsequently, the clarified lysate was passed through the
resin and washed twice with 4 mL of wash buffer (50 mM
Tris-HCl pH 8.0, 150 mM NaCl and 10 mM imidazole).
Proteins were eluted four times with 1 mL elution buffer
(50 mM Tris-HCl pH 8.0, 150 mM NaCl and 200 mM imi-
dazole) and the purification was verified by SDS/PAGE.
The protein was dialized overnight against 50 mM Tris-
HCl pH 8.0 and 150 mM NaCl at 4°C.

Determination of Physiological Parameters
Citrus sinensis plants were grown in a growth chamber
in incandescent light at 28°C with a photoperiod of 14
h. Three leaves from three different plants were infil-
trated with XacPNP at 5 μM diluted in Tris 50 mM and
as a control, leaves were infiltrated with Tris 50 mM. At
30 min, 2, 4, 6 and 8 hours post infiltration chlorophyll
fluorescence parameters were measured using a portable
pulse amplitude modulation fluorometer (Qubit systems
Inc., Ontario, Canada) connected to a notebook compu-
ter with data acquisition software (Logger Pro3 Version).
The minimal fluorescence level (Fo) in the dark-adapted
state was measured when only the LED light was turned
on. The output from the LED light is insufficient to
drive photosynthesis and does not disturb the dark-
adapted state. The maximal fluorescence level in the
dark-adapted state (Fm), the fluorescence emission from
leaf adapted to actinic light (F’) and the maximal fluor-
escence level during illumination (F’m) were measured
by a 0.8 s saturating pulse at 5000 μmol m-2 s-1. Fm was
measured after 30 min of dark adaptation. F’m was mea-
sured with actinic light source of photon flux density
(PPFD) 100 μmol m-2 s-1. The minimal fluorescence
level during illumination (F’o) was calculated from
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measured values of Fo, Fm and F’m. Variable fluorescence
yield was determined in dark-adapted (Fv = Fm - Fo) and
in light-adapted (F’v = F’m - F’o) states. Photosynthetic
parameters: potential (Fv/Fm) and effective (F’v/F’m)
quantum efficiency of PSII, PSII operating efficiency
{jPSII = [(F’m - F’)/F’m]}, photochemical qP = [(F’m - F’)/
(F’m - F’o)] and nonphotochemical NPQ = [(Fm - F’m)/
F’m] fluorescence quenching were calculated as
described [27] and analyzed with one-way ANOVA. Leaf
water potential (ψw) was measured by the isopiestic
thermocouple psychometric technique (Dew Point
Microvoltmeter HR-33T, Wescor, USA). For this vari-
able, an average of 10 samples (10 leaves) were taken.

Plant Treatment and Protein Extraction
Protein extracts from three leaves infiltrated with 5 μM
XacPNP in 50 mM Tris as well as control leaves infil-
trated with 50 mM Tris both for 30 minutes were pre-
pared by pulverization of leaves in liquid nitrogen
followed by re-suspension in 50 mM Hepes-KOH buffer
pH 7.5, 330 mM sorbitol, 5 mM sodium ascorbate, 2 mM
EDTA, 1 mM MgCl2, 1 mM MnCl2 and 0.33 mM PMSF
in a 1:2 ratio. The samples were centrifuged at 12000 × g
at 4°C, for 20 min and soluble proteins were precipitated
with 10% trichloroacetic acid (TCA) in acetone. Precipi-
tated proteins were collected by centrifugation at 13400
× g for 10 min at 4°C. The pellet was washed three times
with ice-cold 80% acetone by centrifuging at 13400 × g
for 10 min per wash. The pellet was then air dried at
room temperature and resuspended in urea buffer (9 M
urea, 2 M thiourea and 4% 3- [(3-Cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS)] for at
least 1 h with vigorous vortexing at room temperature.
Protein content of total soluble protein was estimated by
a modified Bradford assay using BSA as standard [[71]].

Two-dimensional (2-DE) Gel Electrophoresis
Soluble protein samples (150 μg) were mixed with 0.8%
(w/v) dithiothreitol (DTT), 0.2% (v/v) ampholytes pH 3-
10 (BIO-RAD, Hercules, CA), 0.002% bromophenol blue
and the volume was adjusted to 125 μL using urea buf-
fer. The samples were then used to passively rehydrate
linear 7 cm IPG strips, pH range 4-7 (BIO-RAD) over-
night at room temperature. The strips were subjected to
isoelectric focusing (IEF) using the Ettan™IPGphor II™
(GE Healthcare, Amersham, UK), in a step wise
programme for a total of 3,700 Vhrs at 20°C. Prior to
the second dimension, the strips were equilibrated twice
for 10 min with gentle shaking in an equilibration buffer
(6 m urea, 2% (w/v) SDS, 0.05 m Tris-HCl, pH 8.8 and
20% (v/v) glycerol) firstly containing 1% (w/v) DTT and
then 2.5% (w/v) iodoacetamide. The strips were then
loaded to 12% SDS-PAGE gels and electrophoresed at
120 V until the bromophenol blue dye reached the

bottom of the gel plates (about 90 min). The gels were
stained with Coomassie Brilliant Blue, imaged with the
PharosFX™ plus molecular imager scanner (BIO-RAD)
and analysed using the PD-Quest software (BIO-RAD).
Ten spots that showed reproducible induced expression
as determined by the T-test from PD-Quest (p < 0.05)
were selected for mass spectrometry analysis.

In-Gel Trypsin Digestion and Mass Determination
Spots of interest were excised manually and transferred
into sterile microcentrifuge tubes. The gel pieces were
washed twice with 50 mM ammonium bicarbonate for 5
min each time and a third time for 30 min, vortexing
occasionally. The gel pieces were then destained two
times with 50% (v/v) 50 mM ammonium bicarbonate
and 50% (v/v) acetonitrile for 30 min, vortexing occa-
sionally. The gel pieces were dehydrated with 100 μL (v/
v) acetonitrile for 5 min, and then completely dessicated
using the Speed Vac SC100 (ThermoSavant, Waltham,
MA, USA). Proteins were in-gel digested with approxi-
mately 120 ng sequencing grade modified trypsin (Pro-
mega, Madison, WI, USA) dissolved in 25 mM
ammonium bicarbonate overnight at 37°C. The protein
digestion was stopped by adding 50-100 μL of 1% (v/v)
trifluoroacetic acid (TFA) and incubating 2-4 h at room
temperature before storage at 4°C until further analysis.
Prior identification, the samples were cleaned-up by

reverse phase chromatography using ZipTipC18™ (Milli-
pore, Billerica, MA, USA) pre-equilibrated first in 100%
(v/v) acetonitrile and then in 0.1% (v/v) TFA and eluted
out with 50% (v/v) acetonitrile. One microlitre from each
sample was mixed with the same volume of a-cyna-
hydroxy-cinnamic acid (CHCA) matrix and spotted onto a
MALDI target plate for analysis using a MALDI-TOF
mass spectrometer, the Voyager DE Pro Biospectrometry
workstation (Applied Biosystems, Forster City, CA, USA)
to generate a peptide mass fingerprint. All MALDI spectra
were calibrated using sequazyme calibration mixture II
containing angiotensin I, ACTH (1-17 clip), ACTH (18-39
clip), ACTH (7-38 clip) and bovine insulin (Applied Bio-
systems). The NCBI and MSDB peptide mass databases
were searched using MASCOT http://www.matrixscience.
com/search_form_select.html with 100 ppm accuracy and
oxidation as variable modification selected. Only proteins
identified with bioinformatics algorithm MOWSE scores
of 70 and above were considered as positive hits.

Additional file 1: GO and promoter analysis of Arabidopsis thaliana
homologues of the proteins identified in the proteomics assay. List
of significantly enriched GO terms associated with the identified proteins
expression correlated genes in FatiGO+. Promoter analysis for common
transcription factors sites using Athena.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2229-10-
51-S1.PDF ]
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Additional file 2: Stimulus and mutants analysis of Arabidopsis
thaliana homologues of the proteins identified in the proteomics
assay. (A) Stimulus response analysis in Genevestigator and (B)
Identification of mutants in which the Arabidopsis homologues of the
identified citrus proteins encoding genes were transcriptionally up- or
down-regulated.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2229-10-
51-S2.PDF ]

Abbreviations
PNP: plant natriuretic peptide; XacPNP: Xanthomonas axonopodis pv.citri
PNP-like protein; PSII: photosystem II; GO: gene ontology; ABA: abscisic acid;
ABRE: ABA-responsive element; TF: transcription factor; GA: giberellin; PR:
pathogenesis related protein; MALDI-TOF: matrix assisted laser desorption/
ionisation time-of-flight; MOWSE: molecular weight search.
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